

Solenis

2025 CDP Corporate Questionnaire 2025

Word version

Important: this export excludes unanswered questions

This document is an export of your organization's CDP questionnaire response. It contains all data points for questions that are answered or in progress. There may be questions or data points that you have been requested to provide, which are missing from this document because they are currently unanswered. Please note that it is your responsibility to verify that your questionnaire response is complete prior to submission. CDP will not be liable for any failure to do so.

Read full terms of disclosure

Contents

C1. Introduction

(1.1) In which language are you submitting your response?

Select from:

English

(1.2) Select the currency used for all financial information disclosed throughout your response.

Select from:

USD

(1.3) Provide an overview and introduction to your organization.

(1.3.2) Organization type

Select from:

✓ Privately owned organization

(1.3.3) Description of organization

Solenis, owned by Platinum Equity, is a leading global producer of specialty chemicals focused on delivering sustainable solutions for water-intensive industries, including pulp and paper, institutional, industrial, food and beverage, and pool and spa water markets. The company's product portfolio includes a broad array of water treatment chemistries, process aids, functional additives, cleaners, disinfectants, and state-of-the-art monitoring, control and delivery systems. These technologies are used by customers to improve operational efficiencies, enhance product quality, protect plant assets, minimize environmental impact, and create cleaner and safer environments. Headquartered in Wilmington, Delaware, the company has 70 manufacturing facilities strategically located around the globe and employs a team of over 16,500 professionals in 130 countries across six continents.

[Fixed row]

(1.4) State the end date of the year for which you are reporting data. For emissions data, indicate whether you will be providing emissions data for past reporting years.

/4 / 4\ F.
(1.4.1) End date of reporting year
09/30/2024
(1.4.2) Alignment of this reporting period with your financial reporting period
Select from: ✓ Yes
(1.4.3) Indicate if you are providing emissions data for past reporting years
Select from: ✓ Yes
(1.4.4) Number of past reporting years you will be providing Scope 1 emissions data for
Select from: ✓ 5 years
(1.4.5) Number of past reporting years you will be providing Scope 2 emissions data for
Select from: ✓ 5 years
(1.4.6) Number of past reporting years you will be providing Scope 3 emissions data for
Select from: ☑ 3 years [Fixed row]
(1.4.1) What is your organization's annual revenue for the reporting period?

(1.5) Provide details on your reporting bou	ndary.				
	Is your reporting boundary for your CDP disclosure the same as that used in your financial statements?				
	Select from: ✓ Not applicable – we do not publicly disclose financial statements				
[Fixed row]					
(1.6) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?					
ISIN code - bond					
(1.6.1) Does your organization use this uni	que identifier?				
Select from: ✓ No					
ISIN code - equity					
(1.6.1) Does your organization use this uni	que identifier?				
Select from: ✓ No					
CUSIP number					
(1.6.1) Does your organization use this uni	que identifier?				
Select from: ☑ No					

Ticker symbol

((1.6.1)) Does v	vour ora	enization	use this i	unique i	dentifier?
II.	(1.0.1		your orgu		use tills t	arrique i	aciitiiici .

Select from:

✓ No

SEDOL code

(1.6.1) Does your organization use this unique identifier?

Select from:

✓ No

LEI number

(1.6.1) Does your organization use this unique identifier?

Select from:

✓ No

D-U-N-S number

(1.6.1) Does your organization use this unique identifier?

Select from:

Yes

(1.6.2) Provide your unique identifier

230692082

Other unique identifier

(1.6.1) Does your organization use this unique identifier?

Select from:

✓ No

[Add row]

(1.7) Select the countries/areas in which you operate.

Select all that apply

✓ Peru
✓ Italy

✓ Chile
✓ Kenya

✓ China
✓ Spain

✓ Egypt
✓ Brazil

✓ India

✓ France✓ Poland✓ Rwanda

✓ Israel
✓ Sweden

✓ Mexico✓ Turkey✓ Norway✓ Uganda

✓ Austria ✓ Germany

✓ Belgium
✓ Hungary

✓ Czechia
✓ Ireland

✓ Denmark
✓ Morocco

✓ Finland ✓ Nigeria

✓ Romania ✓ Slovakia

✓ Colombia ✓ Thailand

✓ Malaysia
✓ Viet Nam

✓ Pakistan
✓ Argentina

✓ Portugal ✓ Australia

✓ Guatemala
✓ New Zealand

✓ Indonesia

Singapore

✓ Costa Rica

✓ Netherlands

✓ South Africa

✓ Taiwan, China

☑ Republic of Korea

✓ Dominican Republic

✓ Russian Federation

Philippines

✓ Puerto Rico

Switzerland

✓ Saudi Arabia

✓ Hong Kong SAR, China

✓ United Arab Emirates

✓ United States of America

✓ United Republic of Tanzania

✓ United Kingdom of Great Britain and Northern Ireland

(1.8) Are you able to provide geolocation data for your facilities?

Are you able to provide geolocation data for your facilities?	Comment
Select from: ✓ Yes, for all facilities	Data included for all manufacturing facilities

[Fixed row]

(1.8.1) Please provide all available geolocation data for your facilities.

Row 1

(1.8.1.1) Identifier

Alpharetta, US Georgia

(1.8.1.2) Latitude

-84.229649

(1.8.1.4) Comment

.

Row 2

(1.8.1.1) Identifier

Altamira, Mexico

(1.8.1.2) Latitude

22.418104

(1.8.1.3) Longitude

-97.88905

(1.8.1.4) Comment

.

Row 4

(1.8.1.1) Identifier

Amboise, France

(1.8.1.2) Latitude

1.014258

(1.8.1.4) Comment

.

Row 5

(1.8.1.1) Identifier

Ankleshwar, India

(1.8.1.2) Latitude

21.6265

(1.8.1.3) Longitude

73.015213

(1.8.1.4) Comment

.

Row 6

(1.8.1.1) Identifier

Araraquara, Brazil

(1.8.1.2) Latitude

-21.779084

-48.179264

(1.8.1.4) Comment

.

Row 7

(1.8.1.1) Identifier

Bagnolo, Italy

(1.8.1.2) Latitude

45.350215

(1.8.1.3) Longitude

9.609391

(1.8.1.4) Comment

.

Row 8

(1.8.1.1) Identifier

Banfu, China

(1.8.1.2) Latitude

113.322891

(1.8.1.4) Comment

.

Row 9

(1.8.1.1) Identifier

Bradford, UK

(1.8.1.2) Latitude

53.751544

(1.8.1.3) Longitude

-1.759126

(1.8.1.4) Comment

.

Row 12

(1.8.1.1) Identifier

Busnago, Italy

(1.8.1.2) Latitude

9.460698

(1.8.1.4) Comment

.

Row 13

(1.8.1.1) Identifier

Candiac, Canada Quebec

(1.8.1.2) Latitude

45.398246

(1.8.1.3) Longitude

-73.521572

(1.8.1.4) Comment

.

Row 14

(1.8.1.1) Identifier

Charleston, US Tennessee

(1.8.1.2) Latitude

-84.782975

(1.8.1.4) Comment

.

Row 15

(1.8.1.1) Identifier

Chicopee, US Massachusetts

(1.8.1.2) Latitude

42.18251

(1.8.1.3) Longitude

-72.60946

(1.8.1.4) Comment

.

Row 16

(1.8.1.1) Identifier

Conde Duque, Spain

(1.8.1.2) Latitude

-3.677671

(1.8.1.4) Comment

.

Row 17

(1.8.1.1) Identifier

Cotes Park, UK

(1.8.1.2) Latitude

53.090138

(1.8.1.3) Longitude

-1.369285

(1.8.1.4) Comment

.

Row 18

(1.8.1.1) Identifier

Eau Claire, US Wisconsin

(1.8.1.2) Latitude

-91.460407

(1.8.1.4) Comment

.

Row 19

(1.8.1.1) Identifier

Enschede, Netherlands

(1.8.1.2) Latitude

52.219744

(1.8.1.3) Longitude

6.859822

(1.8.1.4) Comment

•

Row 20

(1.8.1.1) Identifier

Florence, US Kentucky

(1.8.1.2) Latitude

-84.603216

(1.8.1.4) Comment

.

Row 21

(1.8.1.1) Identifier

Franklin, US Virginia

(1.8.1.2) Latitude

36.651805

(1.8.1.3) Longitude

-76.99879

(1.8.1.4) Comment

.

Row 22

(1.8.1.1) Identifier

Gebze, Turkey

(1.8.1.2) Latitude

29.491227

(1.8.1.4) Comment

.

Row 23

(1.8.1.1) Identifier

Gimcheon, Korea

(1.8.1.2) Latitude

36.133359

(1.8.1.3) Longitude

128.116691

(1.8.1.4) Comment

.

Row 24

(1.8.1.1) Identifier

Girardota, Columbia

(1.8.1.2) Latitude

-75.456666

(1.8.1.4) Comment

.

Row 25

(1.8.1.1) Identifier

Greensboro, US North Carolina

(1.8.1.2) Latitude

36.047491

(1.8.1.3) Longitude

-79.789092

(1.8.1.4) Comment

.

Row 26

(1.8.1.1) Identifier

Grimsby, UK

(1.8.1.2) Latitude

-0.127563

(1.8.1.4) Comment

.

Row 27

(1.8.1.1) Identifier

Helsingborg, Sweden

(1.8.1.2) Latitude

56.006885

(1.8.1.3) Longitude

12.724495

(1.8.1.4) Comment

.

Row 28

(1.8.1.1) Identifier

Henderson, US Colorado

(1.8.1.2) Latitude

-104.883395

(1.8.1.4) Comment

.

Row 30

(1.8.1.1) Identifier

Igarassu, Brazil

(1.8.1.2) Latitude

-7.792325

(1.8.1.3) Longitude

-34.980133

(1.8.1.4) Comment

.

Row 31

(1.8.1.1) Identifier

Kempton Park, South Africa

(1.8.1.2) Latitude

-26.068369

28.179978

(1.8.1.4) Comment

.

Row 32

(1.8.1.1) Identifier

Kirchheimbolanden, Germany

(1.8.1.2) Latitude

49.675675

(1.8.1.3) Longitude

8.014725

(1.8.1.4) Comment

.

Row 33

(1.8.1.1) Identifier

Krefeld, Germany

(1.8.1.2) Latitude

6.581415

(1.8.1.4) Comment

.

Row 34

(1.8.1.1) Identifier

Kwinana, Australia SW

(1.8.1.2) Latitude

-32.211804

(1.8.1.3) Longitude

115.77677

(1.8.1.4) Comment

.

Row 35

(1.8.1.1) Identifier

Olathe, US Kansas

(1.8.1.2) Latitude

-94.820225

(1.8.1.4) Comment

.

Row 36

(1.8.1.1) Identifier

London, Canada Ontario

(1.8.1.2) Latitude

42.920635

(1.8.1.3) Longitude

-81.189896

(1.8.1.4) Comment

.

Row 37

(1.8.1.1) Identifier

Lurin, Peru

(1.8.1.2) Latitude

-12.28052

-76.86407

(1.8.1.4) Comment

.

Row 38

(1.8.1.1) Identifier

Macon, US Georgia

(1.8.1.2) Latitude

32.701408

(1.8.1.3) Longitude

-83.66237

(1.8.1.4) Comment

.

Row 39

(1.8.1.1) Identifier

Mexico City, Mexico

(1.8.1.2) Latitude

-99.118161

(1.8.1.4) Comment

.

Row 40

(1.8.1.1) Identifier

Milwaukee, US Wisconsin

(1.8.1.2) Latitude

43.112882

(1.8.1.3) Longitude

-87.963421

(1.8.1.4) Comment

.

Row 41

(1.8.1.1) Identifier

Munchweilen, Switzerland

(1.8.1.2) Latitude

8.990089

(1.8.1.4) Comment

.

Row 42

(1.8.1.1) Identifier

Nalagarh, India

(1.8.1.2) Latitude

31.047462

(1.8.1.3) Longitude

76.698737

(1.8.1.4) Comment

.

Row 43

(1.8.1.1) Identifier

Nantou, Taiwan

(1.8.1.2) Latitude

120.665263

(1.8.1.4) Comment

.

Row 44

(1.8.1.1) Identifier

Pasadena, US Texas

(1.8.1.2) Latitude

29.617091

(1.8.1.3) Longitude

-95.060927

(1.8.1.4) Comment

.

Row 45

(1.8.1.1) Identifier

Paulinia, Brazil

(1.8.1.2) Latitude

-22.755009

-47.128956

(1.8.1.4) Comment

.

Row 46

(1.8.1.1) Identifier

Pindo Deli, Indonesia

(1.8.1.2) Latitude

-6.390004

(1.8.1.3) Longitude

107.342943

(1.8.1.4) Comment

.

Row 48

(1.8.1.1) Identifier

Portland, US Oregon

(1.8.1.2) Latitude

-122.709272

(1.8.1.4) Comment

.

Row 49

(1.8.1.1) Identifier

Savannah, US Georgia

(1.8.1.2) Latitude

32.088769

(1.8.1.3) Longitude

-81.149332

(1.8.1.4) Comment

.

Row 50

(1.8.1.1) Identifier

Shanghai, China

(1.8.1.2) Latitude

121.378888

(1.8.1.4) Comment

.

Row 51

(1.8.1.1) Identifier

Sobernheim, Germany

(1.8.1.2) Latitude

49.787346

(1.8.1.3) Longitude

7.626481

(1.8.1.4) Comment

.

Row 52

(1.8.1.1) Identifier

Socorro, Brazil

(1.8.1.2) Latitude

-23.66991

-46.713247

(1.8.1.4) Comment

.

Row 54

(1.8.1.1) Identifier

Sorocaba, Brazil

(1.8.1.2) Latitude

-22.697032

(1.8.1.3) Longitude

-47.355002

(1.8.1.4) Comment

.

Row 55

(1.8.1.1) Identifier

South Charleston, US West Virginia

(1.8.1.2) Latitude

-81.705513

(1.8.1.4) Comment

.

Row 56

(1.8.1.1) Identifier

Springvale, Australia Victoria

(1.8.1.2) Latitude

-37.932361

(1.8.1.3) Longitude

145.148343

(1.8.1.4) Comment

.

Row 57

(1.8.1.1) Identifier

Suffolk, US Virginia

(1.8.1.2) Latitude

-76.541822

(1.8.1.4) Comment

.

Row 58

(1.8.1.1) Identifier

Tampere, Finland

(1.8.1.2) Latitude

61.502157

(1.8.1.3) Longitude

23.577692

(1.8.1.4) Comment

.

Row 59

(1.8.1.1) Identifier

Tarragona, Spain

(1.8.1.2) Latitude

1.232698

(1.8.1.4) Comment

.

Row 60

(1.8.1.1) Identifier

Terrassa, Spain

(1.8.1.2) Latitude

41.54207

(1.8.1.3) Longitude

2.039593

(1.8.1.4) Comment

.

Row 61

(1.8.1.1) Identifier

Tijiw Kimia, Indonesia

(1.8.1.2) Latitude

-7.435365

112.462523

(1.8.1.4) Comment

.

Row 62

(1.8.1.1) Identifier

Tlanepantla, Mexico

(1.8.1.2) Latitude

19.553217

(1.8.1.3) Longitude

-99.202623

(1.8.1.4) Comment

.

Row 63

(1.8.1.1) Identifier

Toledo, US Ohio

(1.8.1.2) Latitude

(1.8.1.3) Longitude

-83.617404

(1.8.1.4) Comment

.

Row 64

(1.8.1.1) Identifier

Toluca, Mexico

(1.8.1.2) Latitude

19.386271

(1.8.1.3) Longitude

-99.566081

(1.8.1.4) Comment

.

Row 65

(1.8.1.1) Identifier

Villa Bosch, Argentina

(1.8.1.2) Latitude

-34.576216

(1.8.1.3) Longitude

-58.420379

(1.8.1.4) Comment

.

Row 66

(1.8.1.1) Identifier

Wadeville, South Africa

(1.8.1.2) Latitude

-26.258244

(1.8.1.3) Longitude

28.184659

(1.8.1.4) Comment

.

Row 67

(1.8.1.1) Identifier

Watertown, US Wisconsin

(1.8.1.2) Latitude

43.183909

(1.8.1.3) Longitude

-88.721094

(1.8.1.4) Comment

.

Row 68

(1.8.1.1) Identifier

Zhuhai, China

(1.8.1.2) Latitude

22.170888

(1.8.1.3) Longitude

113.493551

(1.8.1.4) Comment

[Add row]

(1.14) In which part of the chemicals value chain does your organization operate?

Other chemicals

- ☑ Specialty inorganic chemicals
- ☑ Specialty organic chemicals

(1.22) Provide details on the commodities that you produce and/or source.

Timber products

(1.22.1) Produced and/or sourced

Select from:

Sourced

(1.22.2) Commodity value chain stage

Select all that apply

Manufacturing

(1.22.4) Indicate if you are providing the total commodity volume that is produced and/or sourced

Select from:

✓ No, the total volume is unknown

(1.22.11) Form of commodity

Select all that apply

- ☑ Boards, plywood, engineered wood
- Paper
- ✓ Tertiary packaging

(1.22.12) % of procurement spend

Select from:

✓ Less than 1%

(1.22.13) % of revenue dependent on commodity

Select from:

Unknown

(1.22.14) In the questionnaire setup did you indicate that you are disclosing on this commodity?

Select from:

✓ Yes, disclosing

(1.22.15) Is this commodity considered significant to your business in terms of revenue?

Select from:

✓ No

(1.22.19) Please explain

Timber is mainly used for packaging and paper (e.g. manuals), spend is calculated based on EUDR HS codes--> 0.23%

Palm oil

(1.22.1) Produced and/or sourced

Select from:

Sourced

(1.22.2) Commodity value chain stage

Select all that apply

Manufacturing

(1.22.4) Indicate if you are providing the total commodity volume that is produced and/or sourced

Select from:

✓ No, the total volume is unknown

(1.22.11) Form of commodity

Select all that apply

☑ Refined palm oil

(1.22.12) % of procurement spend

Select from:

✓ Less than 1%

(1.22.13) % of revenue dependent on commodity

Select from:

Unknown

(1.22.14) In the questionnaire setup did you indicate that you are disclosing on this commodity?

Select from:

✓ Yes, disclosing

(1.22.15) Is this commodity considered significant to your business in terms of revenue?

Select from:

Yes

(1.22.19) Please explain

Palm oil is used as a raw material in some of our manufacturing processes. Spend is calculated based on EUDR HS codes--> 0.53%

Soy

(1.22.1) Produced and/or sourced

Select from:

Sourced

(1.22.2) Commodity value chain stage

Select all that apply

Manufacturing

(1.22.3) Indicate if you have direct soy and/or embedded soy in your value chain

Select from:

☑ Mixture of embedded soy and direct soy

(1.22.4) Indicate if you are providing the total commodity volume that is produced and/or sourced

Select from:

✓ No, the total volume is unknown

(1.22.11) Form of commodity

Select all that apply

✓ Soy derivatives

(1.22.12) % of procurement spend

Select from:

✓ Less than 1%

(1.22.13) % of revenue dependent on commodity

Select from:

Unknown

(1.22.14) In the questionnaire setup did you indicate that you are disclosing on this commodity?

Select from:

✓ Yes, disclosing

(1.22.15) Is this commodity considered significant to your business in terms of revenue?

Select from:

V No

(1.22.19) Please explain

Spend is calculated based on EUDR HS codes--> 0.03%

Rubber

(1.22.1) Produced and/or sourced

Select from:

Sourced

(1.22.2) Commodity value chain stage

Select all that apply

Manufacturing

(1.22.4) Indicate if you are providing the total commodity volume that is produced and/or sourced

Select from:

✓ No, the total volume is unknown

(1.22.11) Form of commodity

Select all that apply

✓ Other, please specify :Engineering materials

(1.22.12) % of procurement spend

Select from:

✓ Less than 1%

(1.22.13) % of revenue dependent on commodity

Select from:

✓ Unknown

(1.22.14) In the questionnaire setup did you indicate that you are disclosing on this commodity?

Select from:

✓ Yes, disclosing

(1.22.15) Is this commodity considered significant to your business in terms of revenue?

Select from:

Yes

(1.22.19) Please explain

Commodity sourced mainly for TASKI business; spend is calculated based on EUDR HS codes--> 0.02% [Fixed row]

(1.24) Has your organization mapped its value chain?

(1.24.1) Value chain mapped

Select from:

✓ Yes, we have mapped or are currently in the process of mapping our value chain

(1.24.2) Value chain stages covered in mapping

Select all that apply

✓ Upstream value chain

(1.24.3) Highest supplier tier mapped

Select from:

✓ Tier 1 suppliers

(1.24.4) Highest supplier tier known but not mapped

Sel	lect	from:	•
\mathbf{U}	CUL	II OIII.	

☑ Tier 2 suppliers

(1.24.6) Smallholder inclusion in mapping

Select from:

☑ Smallholders not relevant, and not included

(1.24.7) Description of mapping process and coverage

Solenis has a protocol implemented to ensure that all the supplier information is gathered. Among this information, there is a mandatory document named VRR (Vendor Regulatory Request) filled by the supplier to ensure that supplier fulfils the required specifications.

[Fixed row]

(1.24.1) Have you mapped where in your direct operations or elsewhere in your value chain plastics are produced, commercialized, used, and/or disposed of?

Plastics mapping	Value chain stages covered in mapping
Select from: ✓ Yes, we have mapped or are currently in the process of mapping plastics in our value chain	Select all that apply ☑ Upstream value chain

[Fixed row]

(1.24.2) Which commodities has your organization mapped in your upstream value chain (i.e., supply chain)?

Timber products

(1.24.2.1) Value chain mapped for this sourced commodity

elect from: Yes
1.24.2.2) Highest supplier tier mapped for this sourced commodity
elect from: Tier 1 suppliers
1.24.2.3) % of tier 1 suppliers mapped
elect from: 176-99%
1.24.2.7) Highest supplier tier known but not mapped for this sourced commodity
elect from: Tier 2 suppliers
alm oil
1.24.2.1) Value chain mapped for this sourced commodity
elect from: Yes
1.24.2.2) Highest supplier tier mapped for this sourced commodity
elect from:

(1.24.2.3) % of tier 1 suppliers mapped

Select from:

☑ 76-99%

(1.24.2.7) Highest supplier tier known but not mapped for this sourced commodity Select from: ✓ Tier 2 suppliers Soy (1.24.2.1) Value chain mapped for this sourced commodity Select from: Yes (1.24.2.2) Highest supplier tier mapped for this sourced commodity Select from: ✓ Tier 1 suppliers (1.24.2.3) % of tier 1 suppliers mapped Select from: **☑** 76-99% (1.24.2.7) Highest supplier tier known but not mapped for this sourced commodity Select from:

✓ Tier 2 suppliers

Rubber

(1.24.2.1) Value chain mapped for this sourced commodity

Select from:

✓ Yes

(1.24.2.2) Highest supplier tier mapped for this sourced commodity

Select from:

☑ Tier 1 suppliers

(1.24.2.3) % of tier 1 suppliers mapped

Select from:

✓ 76-99%

(1.24.2.7) Highest supplier tier known but not mapped for this sourced commodity

Select from:

☑ Tier 2 suppliers

[Fixed row]

- C2. Identification, assessment, and management of dependencies, impacts, risks, and opportunities
- (2.1) How does your organization define short-, medium-, and long-term time horizons in relation to the identification, assessment, and management of your environmental dependencies, impacts, risks, and opportunities?

Short-term

(2.1.1) From (years)

2

(2.1.3) To (years)

6

(2.1.4) How this time horizon is linked to strategic and/or financial planning

In the short-term horizon, we focus on regulatory compliance and operational efficiency improvements and addressing immediate physical climate risks (e.g., extreme weather events).

Medium-term

(2.1.1) From (years)

6

(2.1.3) To (years)

26

(2.1.4) How this time horizon is linked to strategic and/or financial planning

Our medium-term horizon reflects strategic transformation efforts and decarbonization planning. Key environmental risks and opportunities addressed include the transition to low-carbon technologies, scaling renewable energy use, responding to water scarcity risks, and aligning products with circular economy demands. Risks and opportunities are reassessed periodically through scenario analysis and materiality assessments, and this horizon informs our Scope 3 decarbonization roadmaps and product innovation.

Long-term

(2.1.1) From (years)

26

(2.1.2) Is your long-term time horizon open ended?

Select from:

✓ Yes

(2.1.4) How this time horizon is linked to strategic and/or financial planning

In the long term, we focus on ensuring the resilience of our business model and value chain under multiple climate and regulatory scenarios. This includes long-duration capital investments, R&D projects targeting net-zero technologies, and nature-related risks such as biodiversity loss. We consider long-term systemic environmental risks like ecosystem degradation, chronic water stress, and climate-related litigation. Our environmental strategy in this period is aligned with global commitments and informs our capital allocation and innovation roadmaps.

[Fixed row]

(2.2) Does your organization have a process for identifying, assessing, and managing environmental dependencies and/or impacts?

(2.2.1) Process in place

Select from:

✓ Yes

(2.2.2) Dependencies and/or impacts evaluated in this process

Select from:

✓ Impacts only

(2.2.4) Primary reason for not evaluating dependencies and/or impacts

Select from:

✓ Not an immediate strategic priority

(2.2.5) Explain why you do not evaluate dependencies and/or impacts and describe any plans to do so in the future

Solenis has several processes in place to evaluate environmental impacts and partial dependencies, including: An annual global EHS site survey covering biodiversity, water, spill management, and proximity to protected areas A Deforestation and Biodiversity Policy that establishes our commitment to preserving ecosystems and minimizing nature-related impacts across the value chain. Procurement Sourcing Policy, which guides procurement decisions and supplier engagement, and working with suppliers who adhere to sustainable forestry practices. In 2024, Solenis conducted a first double materiality assessment aligned with CSRD that includes the identification of nature-related Impacts, Risks, and Opportunities (IROs) across our value chain, where biodiversity, water use, and land use were assessed as part of our impact, risk, and opportunity (IRO) identification. While we have not yet formally adopted the TNFD framework, we are monitoring its evolution and exploring how to incorporate nature-related impacts and dependencies mapping into our long-term strategy and scenario analysis. Our current approach lays a strong foundation for full TNFD alignment and supports compliance with emerging standards such as CSRD and ISSB S2.

[Fixed row]

(2.2.1) Does your organization have a process for identifying, assessing, and managing environmental risks and/or opportunities?

Process in place		Is this process informed by the dependencies and/or impacts process?
Select from: ✓ Yes	Select from: ✓ Both risks and opportunities	Select from: ✓ Yes

[Fixed row]

(2.2.2) Provide details of your organization's process for identifying, assessing, and managing environmental dependencies, impacts, risks, and/or opportunities.

Row 1

(2.2.2.1) Environmental issue

Select all that apply

✓ Climate change

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- Impacts
- ✓ Risks
- Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain
- ✓ Downstream value chain

(2.2.2.4) Coverage

Select from:

Partial

(2.2.2.5) Supplier tiers covered

Select all that apply

☑ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

(2.2.2.9) Time horizons covered

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(2.2.2.10) Integration of risk management process

Select from:

✓ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

✓ Site-specific

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

✓ Other commercially/publicly available tools, please specify :TCFD

Enterprise Risk Management

☑ Enterprise Risk Management

International methodologies and standards

- ✓ IPCC Climate Change Projections
- ☑ ISO 14001 Environmental Management Standard
- ☑ Other international methodologies and standards, please specify: IEA scenarios

Other

- ✓ Scenario analysis
- ✓ Desk-based research
- ✓ External consultants
- ✓ Materiality assessment
- ✓ Partner and stakeholder consultation/analysis

✓ Other, please specify :AI based screening, analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

- ✓ Drought
- ✓ Tornado
- ✓ Landslide
- Wildfires
- ✓ Heat waves

Chronic physical

- ☑ Changing temperature (air, freshwater, marine water)
- ✓ Heat stress
- ✓ Water stress

Policy

- ☑ Carbon pricing mechanisms
- ☑ Changes to international law and bilateral agreements
- ☑ Changes to national legislation

- ✓ Cold wave/frost
- ✓ Heavy precipitation (rain, hail, snow/ice)
- ▼ Flood (coastal, fluvial, pluvial, ground water)

Market

- ✓ Availability and/or increased cost of raw materials
- ☑ Changing customer behavior

Reputation

- ✓ Impact on human health
- ☑ Stakeholder conflicts concerning water resources at a basin/catchment level
- ✓ Stigmatization of sector

Technology

- ✓ Transition to lower emissions technology and products
- ✓ Unsuccessful investment in new technologies

Liability

☑ Exposure to litigation

(2.2.2.14) Partners and stakeholders considered

Select all that apply

- Customers
- Employees
- Investors
- Suppliers
- Regulators

✓ Local communities

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

✓ No

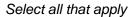
(2.2.2.16) Further details of process

Solenis has embedded the identification, assessment, and management of environmental impacts, risks, and opportunities (IROs) through a cross-functional framework. Our process is aligned with the Task Force on Climate-related Financial Disclosures (TCFD) and CSRD-aligned double materiality expectations. It spans across operational, environmental, and strategic domains and supports future alignment with emerging frameworks like CSRD and ISSB S2. Climate-related risks and opportunities are systematically integrated into our Enterprise Risk Management (ERM) framework and corporate risk register. Oversight is provided by the ERM Committee, Audit Committee, and the Board's Sustainability Committee. Risks are assessed across short-, medium-, and long-term horizons using qualitative and quantitative methods. Site-specific physical risks are evaluated through climate scenario analysis using location-based climate hazard and vulnerability data under SSP1-RCP2.6 and SSP3-RCP7.0 scenarios. Transition risks (e.g., carbon pricing, regulatory shifts) are identified through a combination of internal expert inputs and external developments, using IEA STEPS and NZE scenarios. Each risk is scored for likelihood, impact, and vulnerability. Mitigation measures are developed in line with Solenis' defined risk appetite. Insights influence capital planning, product innovation, facility investments, and supply chain decisions. Governance protocols ensure any exceedance of tolerances is escalated, with final accountability held by the CSO and CEO. In 2024, we completed a double materiality assessment aligned with ESRS, identifying impacts, risks, and opportunities (IROs) across our value chain. The climate-related risk outcomes from this assessment were similar to those from TCFD, aligning with ERM risks. Opportunities, such as developing low-carbon and sustainable products, were aligned with our corporate strategy and R&D priorities. These outcomes demonstrate a clear connection between climate-related risks, risk outcomes from double materiality, and Solenis' Enterprise risk management framework. Opportunities are connected to our strategy and sustainability goals. While we have not formally adopted TNFD, we are monitoring its development and intend to incorporate its principles into future analysis. In 2024, we introduced a Deforestation and Biodiversity Policy and updated our Procurement Sourcing Policy to prioritize ecosystem preservation, responsible sourcing, and sustainable forestry practices across the supply chain. We already assess partial environmental dependencies through our global EHS survey, which gathers site-level data on biodiversity, spill prevention, water use, and proximity to protected areas.

Row 2

(2.2.2.1) Environmental issue

Select all that apply


Water

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- Impacts
- Risks
- Opportunities

(2.2.2.3) Value chain stages covered

✓ Direct operations

(2.2.2.4) Coverage

Select from:

✓ Full

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

(2.2.2.9) Time horizons covered

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(2.2.2.10) Integration of risk management process

Select from:

✓ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

✓ Site-specific

(2.2.2.12) Tools and methods used

Commercially/publicly available tools

✓ WRI Aqueduct

✓ WWF Water Risk Filter

Other

✓ External consultants

(2.2.2.13) Risk types and criteria considered

Acute physical

Drought

✓ Flood (coastal, fluvial, pluvial, ground water)

Chronic physical

✓ Water stress

Policy

✓ Increased difficulty in obtaining water withdrawals permit

✓ Increased pricing of water

☑ Regulation of discharge quality/volumes

☑ Statutory water withdrawal limits/changes to water allocation

Technology

✓ Dependency on water-intensive energy sources

✓ Transition to water efficient and low water intensity technologies and products

(2.2.2.14) Partners and stakeholders considered

Select all that apply

Customers

☑ Other water users at the basin/catchment level

- Employees
- Regulators
- ✓ Local communities
- Water utilities at a local level

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

✓ No

(2.2.2.16) Further details of process

Water-related risks are assessed as part of our climate risk scenario analysis with site-level granularity, low and high carbon emission scenarios in short, medium, and long-term time horizons. This includes risks such as water stress, drought, flooding, and extreme heat across our global operations using the Climate database, which helps project basin-level exposure to future water stress, aligned with our broader climate scenario analysis. As a Solenis, we also internally assess our water stress exposure using the WRI Aqueduct and WWF Water Risk Filter, and cross-reference with EHS site surveys to validate on-the-ground dependencies and response capabilities. Our annual EHS survey gathers site-specific information across all Solenis' operating locations on water sourcing, consumption, reuse, discharge, contingency measures, and local water management policies. Based on the output of TCFD scenario analysis, WRI Aqueduct and WWF Water Risk Filter, and EHS survey insights, we identify sites located in areas of extremely high or high baseline water stress and prioritize those locations in our mitigation planning. All sites located in high-stress areas are required to have active water management plans in place, focusing on conservation, reduction, and reuse. These plans are regularly reviewed and updated based on annual EHS survey results and climate scenario outputs. Mitigation actions are developed and tracked as part of our broader ERM and sustainability strategy, led by our EHS and Sustainability functions. Key measures include: Water efficiency and reuse: In 2024, we made great stride in reduce water through investing in water smart technologies and enhancing process efficiencies. In addition, we track water supply incidents and apply contingency measures to ensure operational continuity. Water-related risks are part of climate risk, which is integrated into our ERM risk universe. Solenis identifies, assesses, and manages climate-related risks and opportunities through an integrated Enterprise Risk Management (ERM) Framework aligned with the recommendations of the Task Force on Climate-related Financial Disclosures (TCFD). Our ERM process is overseen by the ERM Committee and supported by the Audit Committee and Sustainability Committee, ensuring climate-related risks are embedded in our risk universe and corporate risk register. These risks are reviewed at least biannually or in response to material events, with updates reported quarterly to the Audit Committee and Board-level Sustainability Committee. Water-related impacts and opportunities were also found as a result of the double materiality assessment. [Add row]

(2.2.7) Are the interconnections between environmental dependencies, impacts, risks and/or opportunities assessed?

(2.2.7.1) Interconnections between environmental dependencies, impacts, risks and/or opportunities assessed

Select from:

Yes

(2.2.7.2) Description of how interconnections are assessed

Solenis assesses the interconnections through a cross-functional process aligned with TCFD, CSRD-aligned double materiality assessment (DMA), and an Enterprise Risk Management (ERM) system. We recognize that climate and nature-related factors are deeply interconnected, and we are committed to embedding this understanding into business strategy, risk oversight, and innovation. In 2024, we conducted our first DMA, identifying material impacts, risks, and opportunities across short, medium, and long-term horizons. The climate-related risks identified through our TCFD analysis are closely aligned with the outcomes of our DMA. Both assessments are linked to our corporate risk register and reviewed as part of our quarterly ERM governance cadence with the Audit Committee and Sustainability Committee. Moreover, Solenis assesses site-level water-related risks using the WRI Aqueduct and WWF Water Risk Filter, which helps us understand physical climate hazards (e.g., drought, water stress) and their potential impact on operations and supply chain resilience. This assessment is complemented by our annual EHS survey of manufacturing sites, which captures water dependencies, reuse, groundwater protection, and discharge practices. These insights are used to prioritize mitigation investments and inform our broader sustainability strategy. These outcomes demonstrate a clear interconnection between climate-related risks, risk outcomes from DMA, EHS survey results, and Solenis' Enterprise risk management framework. Our 2024 DMA identified product sustainability as a key opportunity area, aligning with our corporate strategy and R&D priorities. These include 90% of innovation projects focused on sustainability by 2030 and 30% of innovation projects aimed at reducing the carbon footprint by 2030, directly aligning with both climate and business opportunity areas. In 2024, we introduced a Deforestation and Biodiversity Policy and updated our Procurement Sourcing Policy to prioritize ecosystem preservation and responsible sourcing across the supply chain. We monitor the impact of our operations and evaluate additional opportunities for positive contributions to biodiversity. While we do not yet perform standalone TNFDaligned assessments, we are actively monitoring its development and intend to incorporate its principles into future analysis. We already assess partial environmental dependencies through our global EHS survey, which gathers site-level data on biodiversity, spill prevention, water use, and proximity to protected areas. Our longterm aim is to systematize the mapping of environmental interconnections and trade-offs, ensuring that sustainability, climate, and nature disclosures support a unified understanding of financial resilience and regulatory preparedness and are embedded into strategy and business opportunity. These interconnections are coordinated by our cross-functional Sustainability Leadership Team and ERM team. [Fixed row]

(2.3) Have you identified priority locations across your value chain?

(2.3.1) Identification of priority locations

Select from:

✓ Yes, we have identified priority locations

(2.3.2) Value chain stages where priority locations have been identified

Select all that apply

✓ Direct operations

(2.3.3) Types of priority locations identified

Sensitive locations

- ✓ Areas important for biodiversity
- ✓ Areas of limited water availability, flooding, and/or poor quality of water

Locations with substantive dependencies, impacts, risks, and/or opportunities

- ✓ Locations with substantive dependencies, impacts, risks, and/or opportunities relating to water
- ✓ Locations with substantive dependencies, impacts, risks, and/or opportunities relating to biodiversity

(2.3.4) Description of process to identify priority locations

The WWF Biodiversity Risk Filter and the WRI Aqueduct tool are used to identify priority locations for biodiversity and water. This is supported by an annual sustainability survey where sites provide feedback on the findings of the results of the WWF and WRI assessments. The full list of priority location could be found in Solenis' Sustainability report - https://sustainability.solenis.com/globalassets/resources/sustainability--regulatory-library/105522-lit-2024sustainabilityreport-en-wb-v2.pdf

(2.3.5) Will you be disclosing a list/spatial map of priority locations?

Select from:

✓ Yes, we will be disclosing the list/geospatial map of priority locations

(2.3.6) Provide a list and/or spatial map of priority locations

2.3 Priority Locations List.xlsx [Fixed row]

(2.4) How does your organization define substantive effects on your organization?

Risks

(2.4.1) Type of definition

Select all that apply

- Qualitative
- Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

✓ Asset value

(2.4.3) Change to indicator

Select from:

✓ Absolute decrease

(2.4.5) Absolute increase/ decrease figure

100000000

(2.4.6) Metrics considered in definition

Select all that apply

- ✓ Frequency of effect occurring
- ☑ Time horizon over which the effect occurs
- ☑ Other, please specify: Proportion of business unit affected Impact on compliance obligations

(2.4.7) Application of definition

At Solenis, a 'substantive effect' from climate-related risks and opportunities is defined as an event or condition that would materially affect our financial health, operational continuity, regulatory standing, or stakeholder trust. Solenis employs a matrix-based risk evaluation approach (aligned with our Enterprise Risk Management Scale) to assess likelihood and impact. A risk or opportunity is deemed substantive if it results in: ≥\$100MM potential financial impact (aligned with our internal 5 = "very high" threshold) Likelihood from 1 "very unlikely" to 5 "almost certain" over the planning horizon This approach is reviewed annually as part of our

climate risk refresh, double materiality analysis, and is aligned with the TCFD framework and WBCSD/ESRS best practices. As our company grows, we update the threshold annually in accordance with our company's size.

Opportunities

(2.4.1) Type of definition

Select all that apply

- Oualitative
- Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

✓ Revenue

(2.4.3) Change to indicator

Select from:

✓ Absolute increase

(2.4.5) Absolute increase/ decrease figure

100000000

(2.4.6) Metrics considered in definition

Select all that apply

- ☑ Frequency of effect occurring
- ✓ Time horizon over which the effect occurs
- ☑ Likelihood of effect occurring
- ☑ Other, please specify: Internal Opportunity Scoring Rubric

(2.4.7) Application of definition

At Solenis, a 'substantive effect' from climate-related risks and opportunities is defined as an event or condition that would materially affect our financial health, operational continuity, regulatory standing, or stakeholder trust. Solenis employs a matrix-based risk evaluation approach (aligned with our Enterprise Risk Management Scale) to assess likelihood and impact. A risk or opportunity is deemed substantive if it results in: ≥\$100MM potential financial impact (aligned with our internal 5 = "very high" threshold) Likelihood from 1 "very unlikely" to 5 "almost certain"over the planning horizon This approach is reviewed annually as part of our climate risk refresh, double materiality analysis, and is aligned with the TCFD framework and WBCSD/ESRS best practices. As our company grows, we update the threshold annually in accordance with our company's size.

[Add row]

(2.5) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?

(2.5.1) Identification and classification of potential water pollutants

Select from:

✓ Yes, we identify and classify our potential water pollutants

(2.5.2) How potential water pollutants are identified and classified

Solenis identifies and classifies water pollutants through our certified EHS&S Management System (RC14001 and ISO 14001), which is supported by our publicly available Responsible Care and Sustainability Policies. (https://www.solenis.com/globalassets/resources/sustainability-regulatory-library/responsible-care-english-v01.pdf, https://sustainability.solenis.com/globalassets/resources/sustainability-regulatory-library/sustainability-v2.pdf) These standards guide our sites in recognizing and managing environmental aspects, including potential impacts from water use and discharge. All manufacturing sites complete an annual EHS survey that includes questions regarding the site's effluent. In the EHS survey each site identifies which pollutants are monitored regarding their effluent streams through lab testing. Solenis classifies pollutants into the following categories such as Oxygen-demanding substances (e.g., BOD, COD); Nutrients (e.g., nitrogen, phosphorus); Organic Substances (identified via TOC); Inorganic compounds (e.g., chlorides, heavy metals); and effluent toxicity testing. Monitoring pollutants is important to ensure compliance with all laws and regulations, in addition to ensuring that local aquatic ecosystems remain balanced. In 2024, over 90% of our sites met applicable discharge limits. Deviations are addressed through root cause analysis and corrective action. To minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated plant activities, we focus our efforts on process optimization. To further understand and develop water strategies the company also utilizes the WRI Aqueduct tool alongside a Water Risk Assessment from the WWF Risk Filter Suit. Currently 100% of our sites have been evaluated using the WRI Aqueduct tool and approximately 42% of sties have completed the Water Risk Assessment. Together these tools help identify high-risk basins, prioritize facilities for water strategy reviews, guide investments for implementing advanced treatment solutio

[Fixed row]

(2.5.1) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your activities.

Row 1

(2.5.1.1) Water pollutant category

Select from:

✓ Other nutrients and oxygen demanding pollutants

(2.5.1.2) Description of water pollutant and potential impacts

Some Solenis facilities have wastewater effluent streams that may have nutrient and oxygen demanding pollutants, including biochemical oxygen demand (BOD, chemical oxygen demand (COD), and organic matter from process water. When these nutrient and oxygen demanding pollutants are discharged from the site and enter the water stream, they consume oxygen as they break down. This breakdown of the pollutants will cause low oxygen conditions (hypoxia) that can harm or kill aquatic life. In addition, elevated concentrations of other nutrients may contribute to algal blooms, which further reduce oxygen levels and disrupt the balance of aquatic ecosystems.

(2.5.1.3) Value chain stage

Select all that apply

✓ Direct operations

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements

(2.5.1.5) Please explain

Solenis minimizes the adverse impacts of nutrient and oxygen-demanding pollutants, such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), and organic matter, through site-specific wastewater treatment strategies. For each facility, the effluent treatment method is selected based on the most appropriate and effective technology available, tailored to the nature and volume of pollutants generated. To ensure environmental protection and regulatory compliance, sites either operate their own wastewater treatment systems or engage third-party treatment providers to reduce pollutants from entering the environment. Effluent quality is regularly monitored against permitted requirements and limits (e.g., BOD and COD concentrations), and results are reviewed. Environmental risks are assessed

through a certified companywide global environmental, health and safety (EH&S) management system (RC14001 and ISO14001) which are subject to regular audits. These certifications ensure that procedures are consistently implemented, monitored, and improved to minimize risks to water ecosystems and human health.

Row 2

(2.5.1.1) Water pollutant category

Select from:

✓ Inorganic pollutants

(2.5.1.2) Description of water pollutant and potential impacts

Many of our sites have wastewater effluent streams that can have inorganic pollutants. To ensure that adverse impacts are minimised the sites either use their own installed wastewater treatment facilities or use third party water treatment services. As part of our RC14001 and ISO14001 certification the sites environmental management systems are regularly audited Some Solenis facilities have wastewater effluent streams that may have inorganic substances such as Chlorides, Sulfates, or heavy metals (e.g., zinc, chromium). These pollutants often are derived from raw materials, process additives, or equipment corrosion. Inorganic pollutants may be toxic to aquatic life, disrupt reproduction and growth, bioaccumulate in food chains, and degrade water quality, potentially affecting aquatic environments and water supplies located downstream.

(2.5.1.3) Value chain stage

Select all that apply

✓ Direct operations

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

- ☑ Requirement for suppliers to comply with regulatory requirements
- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements

(2.5.1.5) Please explain

Solenis minimizes the adverse impacts of in organic pollutants, such as Chlorides, Sulfates, or Heavy metals, through site-specific wastewater treatment strategies. For each facility, the effluent treatment method is selected based on the most appropriate and effective technology available, tailored to the nature and volume of pollutants generated. To ensure environmental protection and regulatory compliance, sites either operate their own wastewater treatment systems or engage third-party treatment providers to reduce pollutants from entering the environment. Effluent quality is regularly monitored against permitted requirements and limits (e.g.,

chlorides, sulfates, and heavy metals), and results are reviewed. Environmental risks are assessed through a certified companywide global environmental, health and safety (EH&S) management system (RC14001 and ISO14001) which are subject to regular audits. These certifications ensure that procedures are consistently implemented, monitored, and improved to minimize risks to water ecosystems and human health.

Row 3

(2.5.1.1) Water pollutant category

Select from:

✓ Oil

(2.5.1.2) Description of water pollutant and potential impacts

Oil and grease can enter wastewater through equipment leaks, or accidental spills. If oil is released into the environment, it will create a sheen on the surface of water, smother the habitat, and coat the aquatic life which ultimately restricts oxygen exchange leading to death. Overall, when oil or grease is released into the environment it negatively impacts all aquatic life and causes long term sediment contamination and clean-up efforts.

(2.5.1.3) Value chain stage

Select all that apply

✓ Direct operations

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

- ☑ Assessment of critical infrastructure and storage condition (leakages, spillages, pipe erosion etc.) and their resilience
- ☑ Industrial and chemical accidents prevention, preparedness, and response
- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements

(2.5.1.5) Please explain

Solenis prioritizes the prevention of oil and grease contamination in wastewater through spill prevention protocols, secondary containment, and emergency response procedures in line with local laws and regulations as well as corporate requirements. Such as employee training, routine emergency drills, and the strategic placement of spill kits around sites. Together, these measures are designed to minimize the risk of oil entering effluent streams during routine operations, thereby reducing the likelihood of surface sheen, oxygen depletion, and harm to aquatic life. If oil does enter wastewater, site-specific treatment technologies are employed to remove or neutralize contaminants prior to discharge. Treatment methods are selected based on the nature of operations and applicable regulatory requirements. Success is

measured by monitoring effluent oil and grease concentrations against regulatory thresholds and tracking spill incidents (recorded EICs.) Performance is reviewed through site inspections, internal audits, and compliance with discharge permits. Environmental risks are assessed through a certified companywide global environmental, health and safety (EH&S) management system (RC14001 and ISO14001) which are subject to regular audits. These certifications ensure that procedures are consistently implemented, monitored, and improved to minimize risk

Row 5

(2.5.1.1) Water pollutant category

Select from:

✓ Nitrates

(2.5.1.2) Description of water pollutant and potential impacts

Some Solenis facilities have wastewater effluent streams that may contain nitrates. These nitrates originate from residual chemicals or cleaning processes. In surface water, nitrates promote excessive algal growth, which can reduce oxygen levels and harm aquatic species. In groundwater and drinking water, elevated nitrate concentrations can pose health risks, for vulnerable individuals such as infants.

(2.5.1.3) Value chain stage

Select all that apply

✓ Direct operations

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements

(2.5.1.5) Please explain

Solenis minimizes the adverse impacts of Nitrates through site-specific wastewater treatment strategies. For each facility, the effluent treatment method is selected based on the most appropriate and effective technology available, tailored to the nature and volume of pollutants generated. To ensure environmental protection and regulatory compliance, sites either operate their own wastewater treatment systems or engage third-party treatment providers to reduce pollutants from entering the environment. Effluent quality is routinely monitored through regular sampling and laboratory analysis, to demonstrate compliance with discharge permit requirements. Environmental risks are assessed through a certified companywide global environmental, health and safety (EH&S) management system (RC14001 and ISO14001)

which are subject to regular audits. These certifications ensure that procedures are consistently implemented, monitored, and improved to minimize risks to water ecosystems and human health.

Row 6

(2.5.1.1) Water pollutant category

Select from:

Phosphates

(2.5.1.2) Description of water pollutant and potential impacts

Some Solenis facilities have wastewater effluent streams that may contain phosphates. These phosphates in wastewater effluents come from chemical formulations and can lead to excessive algal growth, reduce oxygen levels, and potentially release harmful toxins. Overall, phosphates can negatively impact aquatic environments and water supplies located downstream.

(2.5.1.3) Value chain stage

Select all that apply

✓ Direct operations

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements

(2.5.1.5) Please explain

Solenis minimizes the adverse impacts of Phosphates through site-specific wastewater treatment strategies. For each facility, the effluent treatment method is selected based on the most appropriate and effective technology available, tailored to the nature and volume of pollutants generated. To ensure environmental protection and regulatory compliance, sites either operate their own wastewater treatment systems or engage third-party treatment providers to reduce pollutants from entering the environment. Effluent quality is regularly monitored against permitted requirements and limit, and results are reviewed. Environmental risks are assessed through a certified companywide global environmental, health and safety (EH&S) management system (RC14001 and ISO14001) which are subject to regular audits. These certifications ensure that procedures are consistently implemented, monitored, and improved to minimize risks to water ecosystems and human health.

Row 7

(2.5.1.1) Water pollutant category

Select from:

✓ Other physical pollutants

(2.5.1.2) Description of water pollutant and potential impacts

Some Solenis facilities have wastewater effluent streams that may contain other physical pollutants such as total suspended solids, high or low pH, and fluctuating temperatures. These physical pollutants are typical pollutants associated with site specific chemical manufacturing processes. Total suspended solids in wastewater can increase turbidity, limiting light penetration through the water. This reduction in light can prevent aquatic plants and organisms at the bottom of ecosystems from receiving the energy they need, potentially leading to suffocation and habitat disruption. When wastewater with fluctuating pH levels enters local aquatic ecosystems, it can disrupt essential biological functions in aquatic organisms, with can cause stress or harm to their health and survival. Temperature fluctuations in wastewater discharges can lower dissolved oxygen levels in local water bodies, placing additional stress on aquatic species and disrupting the ecosystem's balance.

(2.5.1.3) Value chain stage

Select all that apply

✓ Direct operations

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements

(2.5.1.5) Please explain

Solenis minimizes the adverse impacts of Other Physical Pollutants such as, pH, temperature, or total suspended solids (TSS), through site-specific wastewater treatment strategies. Each facility applies the most effective technology based on the nature and volume of pollutants generated. For pH control specifically, some sites conduct pH correction, maintaining effluent within the range of 6 to 10 through equalization to ensure regulatory requirements. To ensure compliance with pH discharge limits, regular instrumentation calibrations (pH meters) are conducted along with testing of effluent samples. In addition to monitoring pH effluent quality is routinely monitored through sampling and laboratory analysis for parameters such as TSS and temperature. Which ensures compliance and enables early detection of potential exceedances. Success is measured by maintaining effluent parameters within permitted thresholds, evaluating performance trends over time, and reviewing results through internal audits and site inspections. To further protect the environment, sites either operate their own treatment systems or use third-party providers to minimize pollutants discharged. Environmental risk are assessed through a certified companywide global environmental, health and safety (EH&S) management RC14001 and ISO14001) which are subject to regular audits. [Add row]

C3. Disclosure of risks and opportunities

(3.1) Have you identified any environmental risks which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

Climate change

(3.1.1) Environmental risks identified

Select from:

✓ Yes, only within our direct operations

(3.1.2) Primary reason why your organization does not consider itself to have environmental risks in your direct operations and/or upstream/downstream value chain

Select from:

✓ Evaluation in progress

(3.1.3) Please explain

In our most recent cycle, we conducted a comprehensive climate risk assessment focused on our direct operations. This was a strategic first step following the integration of Diversey, aimed at quantifying the extent to which our physical assets and operations are exposed to both physical climate risks and transition risks. While the scope of the current TCFD-aligned analysis was centered on operations, our assessment process also revealed indirect exposure across our value chain. For instance, transition risks linked to shifts in customer demand/preference highlight downstream exposure, and volatility in raw material sourcing points to potential upstream vulnerabilities. Recognizing this, in the next assessment, we plan to expand our assessment to include upstream and downstream value chains across both physical and transition risk categories, after the full integration of our recent acquisitions. Our next assessment cycle will therefore deliver more comprehensive results, allowing us to capture risks across the procurement and downstream, in addition to our operational analysis.

Forests

(3.1.1) Environmental risks identified

Select from:

V No

(3.1.2) Primary reason why your organization does not consider itself to have environmental risks in your direct operations and/or upstream/downstream value chain

Select from:

✓ Not an immediate strategic priority

(3.1.3) Please explain

As part of our 2024 integration of the Diversey business, we conducted a comprehensive environmental risk review across material use, encompassing plastics and packaging. The initial results indicate increased exposure to emerging Extended Producer Responsibility (EPR) regulations in Europe and the USA. We anticipate completing the residual risk review in Q4 2025.

Water

(3.1.1) Environmental risks identified

Select from:

✓ Yes, only within our direct operations

(3.1.2) Primary reason why your organization does not consider itself to have environmental risks in your direct operations and/or upstream/downstream value chain

Select from:

✓ Evaluation in progress

(3.1.3) Please explain

In our most recent cycle, we conducted a comprehensive climate risk assessment focused on our direct operations. This was a strategic first step following the integration of Diversey, aimed at quantifying the extent to which our physical assets and operations are exposed to both physical climate risks and transition risks. While the scope of the current TCFD-aligned analysis was centered on operations, our assessment process also revealed indirect exposure across our value chain. For instance, transition risks linked to shifts in customer demand/preference highlight downstream exposure, and volatility in raw material sourcing points to potential upstream vulnerabilities. Recognizing this, in the next assessment, we plan to expand our assessment to include upstream and downstream value chains across both

physical and transition risk categories, after the full integration of our recent acquisitions. Our next assessment cycle will therefore deliver more comprehensive results, allowing us to capture risks across the procurement and downstream, in addition to our operational analysis.

Plastics

(3.1.1) Environmental risks identified

Select from:

✓ No

(3.1.2) Primary reason why your organization does not consider itself to have environmental risks in your direct operations and/or upstream/downstream value chain

Select from:

✓ Not an immediate strategic priority

(3.1.3) Please explain

As part of our 2024 integration of the Diversey business, we conducted a comprehensive environmental risk review across material use, encompassing plastics and packaging. The initial results indicate increased exposure to emerging Extended Producer Responsibility (EPR) regulations in Europe and the USA. We anticipate completing the residual risk review in Q4 2025.

[Fixed row]

(3.1.1) Provide details of the environmental risks identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.1.1.1) Risk identifier

Select from:

Risk3

(3.1.1.3) Risk types and primary environmental risk driver

✓ Cyclone, hurricane, typhoon

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

- China
- India
- ✓ Mexico
- ✓ Taiwan, China
- ✓ United States of America

(3.1.1.9) Organization-specific description of risk

Solenis owns and operates chemical manufacturing facilities in several regions vulnerable to acute physical climate hazards, including hurricanes and cyclones as modelled in a high-temperature long-term scenario. The hurricane risk can potentially result in significant damage to production infrastructure, vehicles, stored chemical products, and utility systems. Operational consequences include production downtime from evacuations or repairs, hazardous material releases, and regulatory or reputational consequences from environmental damage. Coastal facilities in some regions are similarly exposed to tropical cyclone risk, with implications for both site operations and upstream supply chain disruption.

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Decreased asset value or asset useful life leading to write-offs, asset impairment or early retirement of existing assets

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

✓ Medium-term

✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

Likely

(3.1.1.14) Magnitude

Select from:

✓ Low

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

While the current average hurricane risk across all global sites is categorized as Low, specific locations, are rated as High Risk. In the high-temperature long-term scenario (RCP7, 2050), the financial impact of a single major hurricane at our Texas facility is modeled to exceed USD 50 million in damages and associated costs. Potential effects include: Capital expenditures increase for storm proofing infrastructure and systems. OpEx increases for repair, insurance premiums, and clean-up Cash flow disruption due to halted production and delayed shipments Reduced revenue due to order cancellations or unmet demand Asset impairments from storm-damaged machinery or chemical inventory loss This could materially affect earnings volatility, insurance liability, and net income.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

2000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

50000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

50000000

(3.1.1.25) Explanation of financial effect figure

We calculated the financial impact of a single major hurricane based on modeled wind speeds under a high warming scenario with wind speeds of up to 139 mph..

Additionally, we modeled a business interruption period of 17.5 days, based on external disaster surveys, during which revenue loss and operating expenses (OpEx)

(3.1.1.26) Primary response to risk

Policies and plans

✓ Develop a climate transition plan

(3.1.1.27) Cost of response to risk

0

(3.1.1.28) Explanation of cost calculation

While we do not currently have a discrete estimate of the total cost associated with developing a flood and cyclone emergency mitigation plan, this is primarily due to the long-term nature of the risk identified under a high-temperature climate scenario. However, this analysis plays a critical role in informing our facility-level climate risk mitigation priorities. We integrate these insights into our annual capital planning, engineering assessments, and site resilience programs. Additionally, Solenis maintains comprehensive insurance coverage, which includes physical climate risks, reviewed and updated regularly. We anticipate that future iterations of our scenario analysis and facility planning will increasingly allow for the quantification of adaptation costs at the site level.

(3.1.1.29) Description of response

The overall exposure to tropical cyclones is low, with a small proportion of our assets exposed to potentially damaging hurricane winds and flooding. Where sites are located in potential flood areas, the risks and mitigation are reviewed as part of the Facility Risk Assessment process. Solenis is planning to assess site-specific vulnerabilities and explore appropriate measures to enhance resilience, including evaluating opportunities to reduce operational disruptions, protect employee safety and minimize environmental risks associated with storm-related damage.

Water

(3.1.1.1) Risk identifier

Select from:

✓ Risk2

(3.1.1.3) Risk types and primary environmental risk driver

Chronic physical

✓ Water stress

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

Peru

✓ Indonesia

✓ India

✓ South Africa

- ✓ Spain
- ✓ Mexico
- Australia

(3.1.1.7) River basin where the risk occurs

Select all that apply

- ✓ Brantas
- ✓ Limpopo
- ☑ Other, please specify: Australia East Coast, Australia West Coast, China Lake Tail Hu, Taan/Tachia, Java Timor, Lima Coast, Rio Lerma

(3.1.1.9) Organization-specific description of risk

Climate scenario analysis conducted in 2025 revealed that locations including South Africa, Brazil, and Mexico face significant drought and water stress risks, projected to increase under a high temperature long-term scenario. Water stress at these facilities can reduce the availability of intake water, prompting production slowdowns or shutdowns, increasing operational complexity, and requiring investment in additional water treatment or alternative sources. Sites in South America are also exposed to compounded risks from extreme heat, exacerbating worker health challenges and cooling efficiency. In areas like South Africa and central Mexico, prolonged droughts may impair water supply reliability, disrupt operations, and impact supply chains, especially for water-dependent raw materials. Water restrictions, particularly in Spain and Italy, are anticipated to become more frequent, with direct consequences for Solenis's operational resilience and cost structure. Disruptions due to water shortages could lead to operational downtime, increased costs, and potential loss of market share.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Decreased revenues due to reduced production capacity

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

Likely

(3.1.1.14) Magnitude

Select from:

Medium

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Water stress and drought conditions are anticipated to materially impact Solenis's financial position through increased operational expenditures associated with water procurement, storage infrastructure, cooling system upgrades, and alternative water sourcing. Additionally, production curtailments at water-stressed sites may result in reduced revenue and margins due to lower output or missed customer commitments. For example, prolonged drought in locations in South Africa or Mexico could cause site-level revenue impacts of up to several million USD per annum through production losses and increased input costs. While precise cash flow impacts will

vary by region and scenario severity, scenario modeling indicates a trend toward rising OpEx, capital reinvestment needs, and pressure on working capital in water-stressed and drought-prone areas

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ Yes

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

0

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

20000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

0

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

19000000

(3.1.1.25) Explanation of financial effect figure

The figures were calculated by applying projected water tariffs to estimated annual withdrawals at 82 facilities, categorized by WRI water stress levels. Tariffs ranged from \$1.81 to \$2.87 per m³ depending on the stress level. Across SSP1-2.6 and SSP3-7.0 scenarios for 2030 and 2050, projected water costs remain between \$18M—\$19M annually. This reflects shifts in exposure to higher-stress regions. The estimates are modeled, not paid, but help prioritize mitigation planning (e.g., storage or treatment investments), which may range from \$2M—\$4 \$4M per site. While no direct cost increase is reported yet, these figures guide long-term facility risk planning and resource allocation.

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending

☑ Adopt water efficiency, water reuse, recycling and conservation practices

(3.1.1.27) Cost of response to risk

0

(3.1.1.28) Explanation of cost calculation

All Solenis sites in high- or extremely high-water-stress areas have active water management plans, and our company-wide goal is to reduce process water intensity by 10% by 2035. These investments are embedded within our ongoing site management and are not treated as standalone capital expenditures (CapEx), which is why we report 0 in the response cost field. While we have not calculated a precise monetary figure for the cost of implementing water efficiency, reuse, recycling, and conservation measures across all high-risk sites, we estimate that such initiatives typically represent less than 1% of Solenis' total operational expenditure and approximately 1–3% of annual site-level OPEX in high or extremely high water-stressed regions.

(3.1.1.29) Description of response

In response to water scarcity risks in regions such as Mexico, South Africa, Spain, and the U.S., Solenis has embedded water resilience into both capital planning and operational strategy. All sites operate under our ISO 14001 and RC14001-certified Environmental, Health & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For sites identified as higher risk, more detailed assessments will be conducted to evaluate local conditions and develop site-specific mitigation plans to safeguard business continuity. At the corporate level, Solenis has set a target to reduce water intensity by 10% by 2035 (baseline year 2023). To support this goal, we established a North America Water Reduction Team, with plans to expand similar teams in other regions. These teams facilitate site-level projects, knowledge sharing, and progress tracking. For example, our Charleston, TN facility reduced treated water usage by ~24% through a phased retrofit of cooling systems and seal water flows, demonstrating how local projects can deliver meaningful water risk mitigation and efficiency improvements.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk1

(3.1.1.3) Risk types and primary environmental risk driver

Chronic physical

✓ Heat stress

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

- ✓ Brazil
- Colombia
- ✓ Indonesia
- Mexico
- Peru

(3.1.1.9) Organization-specific description of risk

Solenis has identified extreme heat and human heat stress as key physical climate risks that are expected to have a substantive financial and operational effect across our global manufacturing footprint under the SSP3-RCP7.0 (high emissions) scenario. Sites, especially in South America and Indonesia, were highlighted as particularly vulnerable. Sites situated in high-temperature zones will have rising electricity demand and annual cooling costs due to extreme heat. Extreme heat costs are relatively small, but when aggregated across many facilities, cooling costs increase, and shifts in energy intensity could lead to an estimated \$5–7 million in additional annual operating costs under high-temperature scenarios by 2050. Human health and safety are also at risk due to increased heat exposure for facility personnel. This could lead to productivity losses and regulatory exposure, particularly in countries with developing heat stress occupational standards.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Increased capital expenditures

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Medium-term
- ✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

Likely

(3.1.1.14) Magnitude

Select from:

Medium

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Extreme heat and human heat stress are anticipated to have a material but distributed effect on Solenis's financial position, performance, and cash flows over time, particularly under a high-temperature scenario (SSP3-RCP7.0). While individual site impacts may be modest, the aggregate financial effect becomes significant when scaled across 82 manufacturing and office sites. These effects are actively monitored by the EHS team and integrated into our Facility Risk Assessment Review processes. Under a high-temperature long-term climate scenario, cooling-related energy consumption is expected to incur an estimated \$5–7 million in additional annual operating costs for the company. These costs will affect our gross margins in regions with energy-intensive operations or constrained energy markets. Additionally, the need for investments in HVAC retrofits, advanced thermostatic controls, and passive building upgrades will put upward pressure on operating expenditure (OpEx) and potentially limit discretionary capital for research and development (R&D) and decarbonization investments. High heat exposure in regions with limited infrastructure resilience may also elevate insurance premiums or impair asset valuations, particularly in emerging markets. While mitigation actions, such as energy-efficient upgrades and HVAC upgrades, are already underway, the CapEx and OpEx requirement for the incremental cost of cooling systems, adaptation infrastructure, and potential reductions in productivity due to heat-related health stressors could reduce short-term cash availability.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

0

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

27000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

27000000

(3.1.1.25) Explanation of financial effect figure

Annual financial impact of extreme heat across its global operations could reach \$27.07 million by 2050, based on high-emissions scenario modeling (SSP3-RCP7.0). The methodology estimates the total electricity cost required to cool facilities during extended hot days. To determine this, we assumed an additional 6 cooling hours per day above 35° C, along with a cooling demand of 20 BTU/sqft (based on U.S. Department of Energy benchmarks), multiplied by the average electricity price (local industrial averages). This calculation would provide the additional cost for the cooling facility. Aggregated across these sites, the modeled total financial impact from extreme heat reaches \$27.07 million/year by 2050. This estimate does not account for secondary impacts such as worker productivity loss, equipment failure, or rising electricity prices due to climate-driven grid volatility, which could impact financial effects.

(3.1.1.26) Primary response to risk

Policies and plans

✓ Develop a climate transition plan

(3.1.1.27) Cost of response to risk

0

(3.1.1.28) Explanation of cost calculation

To date, a consolidated cost estimate has not been explicitly calculated for the extreme heat risk adaptation measures at the enterprise level. While resilience investments are being made through individual site maintenance budgets, Solenis has not yet isolated a consolidated cost directly attributable to extreme heat adaptation across the global portfolio. Adaptation activities, such as HVAC retrofits and control upgrades, are also distributed across operational and maintenance budgets. Therefore, the cost of response to this specific risk is reported as \$0 in this cycle. But currently, Solenis is in the process of developing its climate transition plan.

(3.1.1.29) Description of response

As global mean temperatures rise, Solenis anticipates a measurable increase in heat stress-related costs. Some of our sites are located in areas where extreme heat and wildfire events are possible. These sites have systems in place to ensure the safety of the workers and the safe operation of the manufacturing processes.

Regular training and reviews of site risks are carried out as part of the Facility Risk Assessments. In 2024, Solenis increased investment in energy-saving projects at manufacturing sites, which include heat recovery and efficient steam generation systems as well. Solenis, for the first time, is working on its climate transition plan, which includes both capital investment and operational measures aimed at mitigating the impact of climate risk, including extreme heat. While these upgrades represent a cost-effective and scalable adaptation approach, Solenis will continue to evaluate the cumulative investment required and expects to report consolidated adaptation expenditures in future reporting years.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk4

(3.1.1.3) Risk types and primary environmental risk driver

Acute physical

Wildfires

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

- ✓ Brazil
- ✓ India
- South Africa
- ✓ Spain

(3.1.1.9) Organization-specific description of risk

Our 2024 climate risk scenario analysis identified wildfires as a high-risk factor for locations in South Africa and Spain under SSP3-7.0 and SSP5-8.5 scenarios in the long term. Wildfires in these regions pose a dual threat: (1) direct physical damage to production infrastructure from smoke, ash, and flames, (2) indirect disruption from blocked transport routes, evacuation orders, and personnel safety issues, which can delay deliveries of raw materials and outbound distribution of finished goods. If a wildfire impacts a site, speedy evacuations are required, and equipment left behind could be destroyed or permanently damaged. Flammable chemicals can cause immense damage to the site and surrounding area by igniting. While the physical loss probability remains low, the potential severity of operational disruption is significant due to the high value and interdependence of upstream assets in our global supply chain. To address these risks, these sites have systems in place to ensure the safety of the workers and the safe operation of the manufacturing processes. Regular training and reviews of site risks are carried out as part of the Facility Risk Assessments.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Disruption in production capacity

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

✓ Medium-term

Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ About as likely as not

(3.1.1.14) Magnitude

Select from:

✓ Medium-low

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Increasing wildfire risk could negatively impact our financial performance and cash flow stability under SSP3-7.0 and SSP5-8.5 climate scenarios in all time horizons. While direct asset damage from wildfires remains a low-probability but high-impact threat, the most material financial exposure comes from potential operational

disruption, rerouting logistics due to the inability of personnel or logistics to access the sites during fire events safely, temporary shutdowns of production or rebuilding damaged infrastructure, which could reduce profitability margins and tighten cash flows and which impact company financial negatively.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ No

(3.1.1.26) Primary response to risk

Policies and plans

✓ Develop a climate transition plan

(3.1.1.27) Cost of response to risk

0

(3.1.1.28) Explanation of cost calculation

Wildfire risks are considered in Solenis's broader enterprise risk management (ERM) and site-level Facility risk assessment reviews. While wildfires are assessed as low-likelihood but potentially high-impact events in our scenario analysis, the mitigation measures already in place reflect our long-term resilience and proactive risk management. As part of EHS, Solenis has fire prevention infrastructure, site-level response plans, and access route controls, as well as employee training and emergency readiness drills, ensuring rapid and coordinated responses in case of any disruption. These activities are embedded within our standard operating procedures and funded through routine operational and resilience budgets; they were not calculated separately. Moreover, Solenis maintains emergency protocols across all manufacturing assets globally, ensuring that any risk can be addressed swiftly and without compromising employee safety, business continuity, or critical infrastructure.

(3.1.1.29) Description of response

As global mean temperatures rise, Solenis anticipates a measurable increase in heat stress-related costs, including wildfires. Some of our sites are located in areas where extreme heat and wildfire events are possible. These sites have systems in place to ensure the safety of the workers and the safe operation of the manufacturing processes. Regular training and reviews of site risks are carried out as part of the Facility Risk Assessments. In 2024, Solenis increased investment in energy-saving projects at manufacturing sites, which include heat recovery and efficient steam generation systems as well. Solenis, for the first time, is working on its climate transition plan, which includes both capital investment and operational measures aimed at mitigating the impact of climate risk, including wildfire risk. While these upgrades represent a cost-effective and scalable adaptation approach, Solenis will continue to evaluate the cumulative investment required and expects to report consolidated adaptation expenditures in future reporting years.

Water

(3.1.1.1) Risk identifier

Select from:

✓ Risk5

(3.1.1.3) Risk types and primary environmental risk driver

Acute physical

✓ Flooding (coastal, fluvial, pluvial, groundwater)

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

- ✓ Finland
- ✓ France
- ✓ Indonesia
- ✓ United Kingdom of Great Britain and Northern Ireland
- ✓ United States of America

(3.1.1.7) River basin where the risk occurs

Select all that apply

- ✓ Loire
- ✓ Mississippi River
- ☑ Other, please specify :UK East Coast, Southern Finland, Tann/Tachia River, Jac-Timor, Lima Coast, Rio Lerma

(3.1.1.9) Organization-specific description of risk

The overall exposure to flooding risk is low, with a small proportion of assets exposed under the SSP3-7.0 and SSP1-2.6 scenarios in the medium and long term. Sites in flood-prone regions such as the USA, UK, and India are exposed to a combination of riverine, pluvial (rain-driven), and coastal flooding, depending on local topography and hydrology. Flooding risk may manifest through direct damage to production assets, machinery, and infrastructure, or indirectly through disruption of transport routes and the supply chain. Upstream suppliers impacted by flooding could delay chemical input deliveries, disrupting Solenis' production schedule and leading to delayed order fulfillment. Flooding can also require emergency evacuations, heightening worker health and safety concerns, and forcing unplanned downtime. Therefore, flood risks are part of our climate risks, which are incorporated into our enterprise risk management system and regular facility-level climate risk assessment reviews. These analyses are used to prioritize adaptation investments, such as elevation of critical equipment, improved site drainage systems, and enhanced emergency preparedness procedures.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Disruption in production capacity

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

✓ Medium-term

✓ Long-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

✓ More likely than not

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

The total estimated financial exposure from flooding is \$50 million, holding constant across both low (SSP1-2.6) and high-emissions (SSP3-7.0) scenarios for 2030 and 2050. This figure reflects modeled damages from riverine, pluvial, and coastal flooding across our global manufacturing footprint. The anticipated effects include: Financial Position: Physical damage to assets such as buildings, storage tanks, and specialized manufacturing equipment may necessitate capital expenditures (CapEx) for repair, replacement, or resilience upgrades. Financial Performance: Flood-related operational disruptions, averaging 17.5 days of downtime per event, can significantly reduce production output and delay customer deliveries. These interruptions may impact top-line revenues and increase operational costs from logistical rerouting, emergency response, or interim production shifts. Cash Flows: Unplanned recovery expenditures and delayed customer payments can cause short-term cash flow constraints, especially in regions with weaker infrastructure and higher disaster response times. Higher insurance premiums, combined with increased expenditures for business continuity and site fortification, may place further pressure on liquidity. Flooding can also have cascading financial impacts on Solenis' supply chain, blocking inbound raw materials or outbound finished goods. It may affect customer satisfaction, resulting in lost contracts or higher working capital needs. As such, Solenis is actively embedding flood risk into our facility-level climate risk reviews, insurance coverage assessments, and capital planning to mitigate these effects.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.21) Anticipated financial effect figure in the medium-term – minimum (currency)

2000

(3.1.1.22) Anticipated financial effect figure in the medium-term – maximum (currency)

50000000

(3.1.1.23) Anticipated financial effect figure in the long-term – minimum (currency)

2000

(3.1.1.24) Anticipated financial effect figure in the long-term – maximum (currency)

50000000

(3.1.1.25) Explanation of financial effect figure

The financial effect of flooding risk was estimated using a quantitative modeling approach that calculates the combined costs of (1) physical damage to assets and (2) business interruption across exposed facilities. The total potential financial effect from the flooding risk is estimated at USD 50 million. It remains constant across time

horizons (2030 and 2050) and scenarios (SSP1-2.6 and SSP3-7.0) due to modeling assumptions that hold event intensity and frequency constant while focusing on worst-case loss scenarios. Physical Damage Component: Estimated flood depths at vulnerable sites were mapped to a proportional damage factor using a depth-damage curve. Facility property values were multiplied by a standardized loss multiplier of 1.5x, as per industry benchmark data. Damage level (%) × Adjusted facility value = Estimated physical damage. Business Interruption Component: An assumed 17.5-day business interruption duration (based on external peer-reviewed research) was applied to the site-level annual cost of disruption. The sum of modeled physical damage and business interruption across all at-risk facilities results in the reported total of USD 51 million. The calculation is used internally to prioritize adaptation responses, guide emergency planning, and support investment in flood resilience as part of Solenis' broader climate risk management strategy.

(3.1.1.26) Primary response to risk

Policies and plans

✓ Develop flood emergency plans

(3.1.1.27) Cost of response to risk

0

(3.1.1.28) Explanation of cost calculation

We do not have a discrete, separate, itemized budget specifically for flooding risk response. Instead, funds to address flooding-related resilience are embedded in broader capital and operational expenditure programs such as emergency planning, facility risk assessments, environmental improvements, and EH&S compliance. Our insurance also covers flood risk. These investments are not disaggregated by hazard type (e.g., flood, fire, extreme heat), making a flood-specific cost attribution infeasible. However, as our risk calculations become more accurate, we will proactively develop the best response to such risks and a climate transition plan.

(3.1.1.29) Description of response

The overall exposure to flooding risk is low, with a small proportion of our assets exposed to potentially damaging flood inundation levels. Where sites are located in potential flood areas, the risks and mitigation are reviewed as part of the Facility Risk Assessment process. Flood-related site-level improvements embedded in Solenis' EH&S and risk management frameworks. Sites identified as high-risk are prioritized for enhanced mitigation planning. Measures include emergency protocols, employee safety procedures, and business continuity plans. Regular training and reviews of site risks are carried out as part of the Facility Risk Assessments. Solenis, for the first time, is working on its climate transition plan, which includes both capital investment and operational measures aimed at mitigating the impact of climate risk, including flood risk. While these upgrades represent a cost-effective and scalable adaptation approach, Solenis will continue to evaluate the cumulative investment required and expects to report consolidated adaptation expenditures in future reporting years. The quantified financial impact of flood risk helps to make informed decisions in capital allocation processes and is addressed within Solenis' broader business resilience strategy.

[Add row]

(3.1.2) Provide the amount and proportion of your financial metrics from the reporting year that are vulnerable to the substantive effects of environmental risks.

Climate change

(3.1.2.1) Financial metric

Select from:

Assets

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

0

(3.1.2.3) % of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

56000000

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

☑ 1-10%

(3.1.2.7) Explanation of financial figures

The financial estimates reflect potential exposure to climate-related physical risks. They are based on modeled projections under high warming scenarios, including factors such as extreme weather and other climate impacts, and consider potential periods of operational disruption informed by historical data. These figures represent modeled estimates to support long-term risk planning, mitigation prioritization, and resource allocation, rather than actual losses incurred.

Water

(3.1.2.1) Financial metric

Select from:

Assets

(3.1.2.2) Amount of financial metric vulnerable to transition risks for this environmental issue (unit currency as selected in 1.2)

 \mathcal{C}

(3.1.2.3) % of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

150000000

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

☑ 11-20%

(3.1.2.7) Explanation of financial figures

The financial estimates reflect potential exposure to water-related physical risks across our operations. They were calculated by applying projected water tariffs to estimated annual water use at our facilities, taking into account regional water stress levels. While actual costs have not yet increased, these modeled figures help

prioritize mitigation measures, such as investments in water storage, treatment, or efficiency improvements. Scenario analyses for future periods (e.g., 2030 and 2050) indicate that potential water-related costs remain within a defined range, highlighting shifts in exposure to higher-risk regions. These estimates are intended for planning and resource allocation purposes rather than representing actual payments
[Add row]

(3.2) Within each river basin, how many facilities are exposed to substantive effects of water-related risks, and what percentage of your total number of facilities does this represent?

Row 1

(3.2.1) Country/Area & River basin

Spain

✓ Other, please specify :Tagus

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

☑ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

☑ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified one facility located in the Tagus River basin, representing ~1.5% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "extremely high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 2

(3.2.1) Country/Area & River basin

United States of America

Mississippi River

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

2

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

(3.2.11) Please explain

In 2024, Solenis identified two facilities located in the Mississippi River basin, representing ~3% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "extremely high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 3

(3.2.1) Country/Area & River basin

South Africa

✓ Limpopo

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

✓ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified one facility located in the Limpopo River basin, representing ~1.5% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "extremely high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 4

(3.2.1) Country/Area & River basin

Australia

✓ Other, please specify : Australia, West Coast

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

☑ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified one facility located in the Australia, west coast water basin, representing ~1.5% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "extremely high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 5

(3.2.1) Country/Area & River basin

Canada

✓ St. Lawrence

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

2

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified two facilities located in the St. Lawrence River basin, representing ~3% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "extremely high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 6

(3.2.1) Country/Area & River basin

Peru

✓ Other, please specify :Pasific Coast

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified one facility located in the Peru, Pacific Coast water basin, representing ~1.5% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "extremely high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 7

(3.2.1) Country/Area & River basin

Mexico

✓ Other, please specify :Gulf of Mexico/ Rao Verde

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified two facilities located in the Golf of Mexico/Rio Verde water basin, representing ~3% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "extremely high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 8

(3.2.1) Country/Area & River basin

China

✓ Other, please specify :Yellow Sea

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified one facility located in the Yellow Sea water basin, representing ~1.5% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "extremely high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 9

(3.2.1) Country/Area & River basin

Spain

Ebro

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

☑ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified one facility located in the Ebro River basin, representing ~1.5% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "extremely high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 11

(3.2.1) Country/Area & River basin

South Africa

Orange

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified one facility located in the Orange River Basin, representing ~1.5% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "extremely high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 12

(3.2.1) Country/Area & River basin

India

✓ Narmada

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified one facility located in the Narmada River basin, representing ~1.5% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 14

(3.2.1) Country/Area & River basin

United States of America

☑ Other, please specify :Golf of Mexico / North Atlantic Coast

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

2

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified two facilities located in the Gulf of Mexico/ North Atlantic coast water basin, representing ~3% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 15

(3.2.1) Country/Area & River basin

Turkey

✓ Other, please specify :Black Sea

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

☑ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified one facility located in the Black Sea water basin, representing ~1.5% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 17

(3.2.1) Country/Area & River basin

Indonesia

✓ Other, please specify :Java / Timor

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

☑ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified one facility located in the Java/ Timor water basin, representing ~1.5% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy.

Row 18

(3.2.1) Country/Area & River basin

Mexico

✓ Other, please specify :Rio Lerma / North Pacific Coast

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

1

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

✓ 1-25%

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 1-10%

(3.2.11) Please explain

In 2024, Solenis identified one facility located in the Lerma/ North Pacific Coast, representing ~1.5% of our global operations, as being exposed to substantive water-related risks. This designation is primarily driven by the basin's classification as "high" water stress under the WRI Aqueduct Water Risk Atlas and the WWF Water Risk Filter Suite. While this represents a small portion of our footprint, we treat such risks with priority. All Solenis sites operate under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EHS) Management System and complete an annual EHS site survey. In addition, facilities are undergoing a Water Risk Assessment based on WWF Water Risk Filter questions, which provides an overall operational risk rating. For higher-risk sites, further detailed assessments will be conducted to better understand local conditions and develop site-specific mitigation plans to safeguard business continuity. We continue to monitor all facilities annually using the WRI Aqueduct tool and disclose the percentage of sites in high water stress areas (~14.7% in 2024) in our Sustainability Report. This process ensures basin-specific risks are systematically identified, managed, and integrated into our long-term water stewardship strategy. [Add row]

(3.3) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

Water-related regulatory violations	Fines, enforcement orders, and/or other penalties	Comment
Select from: ✓ Yes	Select all that apply ✓ Fines, but none that are considered as significant ✓ Enforcement orders or other penalties but none that are considered as significant	Water and Wastewater related fines and notice of violation in our operating sites.

[Fixed row]

(3.3.1) Provide the total number and financial value of all water-related fines.

(3.3.1.1) Total number of fines

2

(3.3.1.2) Total value of fines

500

(3.3.1.3) % of total facilities/operations associated

1.5

(3.3.1.4) Number of fines compared to previous reporting year

Select from:

☑ This is our first year of measurement

(3.3.1.5) Comment

In FY24, Solenis received two minor monetary penalties related to exceeding daily permitted limits for COD and BOD. Each fine was \$250, totaling \$500. Importantly, there were no significant instances of non-compliance in 2024, including spills of material significance to our operations or the communities where we operate. Solenis maintains a robust compliance management program, which ensures that all events are promptly reported through our internal EHS system. Incidents are immediately escalated to the corporate EHS team for support, and corrective actions are implemented in a timely manner to prevent recurrence. This process demonstrates our proactive approach to compliance and reinforces our commitment to protecting the environment, our employees, and the communities where we operate.

[Fixed row]

(3.5) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?

Select from:

Yes

(3.5.1) Select the carbon pricing regulation(s) which impact your operations.

Select all that apply

✓ UK ETS

(3.5.2) Provide details of each Emissions Trading Scheme (ETS) your organization is regulated by.

UK ETS

(3.5.2.1) % of Scope 1 emissions covered by the ETS

22

(3.5.2.2) % of Scope 2 emissions covered by the ETS

0

(3.5.2.3) Period start date
01/01/2024
(3.5.2.4) Period end date
12/31/2024
(3.5.2.5) Allowances allocated
20687
(3.5.2.6) Allowances purchased
26308
(3.5.2.7) Verified Scope 1 emissions in metric tons CO2e
46995
(3.5.2.8) Verified Scope 2 emissions in metric tons CO2e
0
(3.5.2.9) Details of ownership
Select from: ☑ Facilities we own and operate
(0.5.0.10) 0

(3.5.2.10) Comment

The Bradford site is covered by the UK ETS scheme [Fixed row]

(3.5.4) What is your strategy for complying with the systems you are regulated by or anticipate being regulated by?

Compliance with regulated carbon pricing systems is managed at a local site level with oversight from the global sustainability team. The cost of the carbon credits is built into the sites financial budgeting process. A global sustainability survey is held every year with the sites to identify changes to local regulations.

(3.6) Have you identified any environmental opportunities which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

	Environmental opportunities identified
Climate change	Select from: ✓ Yes, we have identified opportunities, and some/all are being realized
Forests	Select from: ✓ Yes, we have identified opportunities, and some/all are being realized
Water	Select from: ✓ Yes, we have identified opportunities, and some/all are being realized

[Fixed row]

(3.6.1) Provide details of the environmental opportunities identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp1

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Products and services

☑ Development of new products or services through R&D and innovation

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

✓ Downstream value chain

(3.6.1.5) Country/area where the opportunity occurs

Select all	that	apply
ooloot all		ربوم

Peru

Chile

China

Egypt

✓ India

✓ France

✓ Greece

✓ Israel

✓ Mexico

Poland

✓ Belgium

Czechia

Denmark

✓ Finland

Germany

✓ Colombia

Malaysia

Pakistan

Portugal

✓ Slovakia

✓ Italy

✓ Kenya

✓ Spain

✓ Brazil

Canada

Rwanda

✓ Sweden

✓ Turkey

✓ Uganda

Austria

Hungary

✓ Ireland

✓ Morocco

✓ Nigeria

Romania

☑ Thailand

✓ Viet Nam

Argentina

Australia

✓ Guatemala

113

- ✓ Indonesia
- Singapore
- ✓ Costa Rica
- Netherlands
- ✓ New Zealand
- ☑ Republic of Korea
- Russian Federation
- ✓ Hong Kong SAR, China
- ✓ United Arab Emirates
- ✓ United States of America

- Philippines
- Switzerland
- ✓ Saudi Arabia
- South Africa
- ✓ Taiwan, China
- ✓ United Republic of Tanzania
- ✓ United Kingdom of Great Britain and Northern Ireland

(3.6.1.8) Organization specific description

Solenis anticipates that the growing demand for low-carbon, water-efficient, and circular solutions will have a medium-to-high positive financial impact on our future revenue, margins, and cash flows. Climate-related opportunities are embedded in our innovation strategy, with ~73% of 2024 revenue already linked to sustainable, innovative products. Our customers face increasing pressure to reduce water use and emissions, especially in water-stressed regions, which expands demand for Solenis solutions. We invest 1.4% of revenue into innovation and R&D, and by 2030, Solenis aims to have 90% of innovation projects focused on sustainability, with 30% targeting carbon footprint reduction. In 2024, we conducted our first climate risk and opportunity quantification as part of TCFD. The modeling projected revenue for our GPAM product under IEA NZE and STEPS scenarios across time horizons. While this was a pilot on a single product, it illustrates how future growth could scale across our broader climate-aligned portfolio. Key innovations include: Kymene™ bio-based resins that reduce Scope 3 emissions; Clax™ Polar laundry system enabling 65% energy and 50% water savings; and LESSEAU™ solid soap with 95% less water and zero plastic, winner of two Interclean awards. These offerings strengthen our competitive position, drive new revenue, and support long-term cash flow resilience.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Increased revenues resulting from increased demand for products and services

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

- ✓ Medium-term
- ✓ Long-term

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

✓ Likely (66-100%)

(3.6.1.12) Magnitude

Select from:

☑ High

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Solenis anticipates that climate-related opportunities, especially growing demand for low-carbon, water-efficient, and circular solutions, will have a medium-to-high positive impact on our financial position, performance, and long-term cash flows across all time horizons. Our customers, particularly in water-intensive industries (e.g., pulp and paper, healthcare, food & beverage, water treatment), face increasing regulatory and market pressure to reduce emissions, conserve water, and build operational resilience. This is accelerating demand for sustainable solutions, an area where Solenis is strategically positioned to lead. In 2024, ~73% of our revenue was derived from innovative and sustainable products. We embed climate opportunity into our core business model. Solenis invests 1.4% of its annual revenue into R&D and has committed that by 2030, 90% of all innovation projects will focus on sustainability, with 30% specifically focused on carbon footprint reduction. We expect this pipeline to significantly enhance revenue, margins, and competitive advantage, particularly in high-growth regions impacted by water stress and carbon pricing. Revenue calculations for the pilot product GPAM across various IEA scenarios and time horizons revealed that climate/sustainability-focused revenue growth would be the main differentiator of Solenis in the market and help expand Solenis's market share in sustainability-focused segments. As the global water treatment and decarbonization markets continue to grow, we expect climate-driven opportunities to play a central role in our financial performance—generating recurring revenue, stable cash flows, and enhanced access to green capital.

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

Yes

(3.6.1.19) Anticipated financial effect figure in the medium-term - minimum (currency)

600000

(3.6.1.20) Anticipated financial effect figure in the medium-term - maximum (currency)

(3.6.1.21) Anticipated financial effect figure in the long-term - minimum (currency)

1200000

(3.6.1.22) Anticipated financial effect figure in the long-term – maximum (currency)

1200000

(3.6.1.23) Explanation of financial effect figures

The calculation is based on the GPAM product and used our internal life cycle data to compare the emissions from making and transporting each product and applying a future carbon price of \$140 per ton CO₂e, based on the IEA's 2030 forecast for advanced economies. The calculation was based on one route and one customer and scaled to the total sales of that product for the fiscal year,. Emissions and logistics data are based on actual Solenis figures. We assumed similar product characteristics across our sales. Limitations: Real-world carbon pricing and customer responses may vary. We didn't assume any price premium or added revenue. This analysis shows that low-carbon innovation has real financial value. It helps protect our margins, gives customers a more climate-friendly option, and supports Solenis's growth in a low-carbon economy. Future studies will expand this modeling to other products, including those focused on water reuse and circularity.

(3.6.1.24) Cost to realize opportunity

0

(3.6.1.25) Explanation of cost calculation

We do not assign a separate or incremental cost solely to realizing the opportunity of a particular product, as it is part of our core innovation strategy. We invest approximately 1.4% of our total revenue yearly in research and development, consistent with our long-term commitment to sustainability-led innovation. These investments support both short-term reformulations and long-term solutions across our water treatment and specialty chemicals businesses.

(3.6.1.26) Strategy to realize opportunity

Solenis's strategy to realize climate-related opportunities is centered on innovation, product change, and customer decarbonization. Recognizing the growing global demand for low-carbon, water-efficient, and circular solutions, we have embedded sustainability into our core business strategy, product development process, and capital allocation priorities. Our pilot climate opportunity quantification, aligned with TCFD, clearly demonstrated a tangible financial benefit of climate-aligned innovation and strengthened internal buy-in for expanded product-level opportunity analysis. To scale such an approach, Solenis has activated the following strategies: R&D Investment: We invest ~1.4% of total revenue in innovation annually. Innovation and sustainability are embedded in our sustainability goals: 90% of

innovation projects will be sustainability-focused, with 30% targeting direct carbon footprint reduction by 2030. We also work on reducing the carbon footprint of every product. Strengthening our R&D infrastructure: in 2024, we established the Global Technology Office to unify innovation across Solenis, Sigura, and Diversey legacy portfolios, ensuring synergies in sustainable and circular product design. It includes 13 R&D facilities, 9 application labs, and employs 500+ R&D staff globally, enabling rapid scale-up of climate-aligned technologies. Open Innovation collaboration: We partner with universities, government agencies, and cleantech start-ups to co-develop new chemistries, especially in water reuse, scale inhibition, and biobased packaging. Our future efforts will expand to product-level innovations, reducing carbon footprint, supporting investment decisions, and capitalizing on Solenis's leadership in sustainable chemistry.

Forests

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp3

(3.6.1.2) Commodity

Select all that apply

✓ Not applicable

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Markets

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

✓ Downstream value chain

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

✓ Peru

✓ Italy

Chile

✓ Kenya

- China
- Egypt
- ✓ India
- ✓ France
- ✓ Greece
- ✓ Israel
- Mexico
- Poland
- ☑ Belgium
- Czechia
- Denmark
- ✓ Finland
- Germany
- ✓ Colombia
- ✓ Malaysia
- Pakistan
- Portugal
- ✓ Slovakia
- ✓ Indonesia
- Singapore
- ✓ Costa Rica
- Netherlands
- ✓ New Zealand
- ☑ Republic of Korea
- ✓ Russian Federation
- ✓ Hong Kong SAR, China
- ✓ United Arab Emirates
- ✓ United States of America

- ✓ Spain
- ✓ Brazil
- ✓ Canada
- Rwanda
- ✓ Sweden
- Turkey
- Uganda
- Austria
- Hungary
- Ireland
- Morocco
- Nigeria
- Romania
- Thailand
- ✓ Viet Nam
- Argentina
- Australia
- Guatemala
- Philippines
- ✓ Switzerland
- ✓ Saudi Arabia
- ✓ South Africa
- ☑ Taiwan, China
- ✓ United Republic of Tanzania
- ✓ United Kingdom of Great Britain and Northern Ireland

(3.6.1.8) Organization specific description

The pulp, paper, and packaging industries are undergoing a fundamental shift driven by consumer demand, regulatory pressure, and customer sustainability goals to replace plastics with fiber-based alternatives. This transformation represents a significant opportunity for Solenis to expand the reach of our technologies that enable circular, low-carbon, and forest-positive value chains. One key opportunity is the rising demand for sustainable barrier coatings in fiber-based packaging. By replacing traditional plastics such as polyethylene (PE) and PFAS with our TopScreen™ recyclable and compostable coatings, Solenis enables customers to launch paper-based packaging solutions that are both functional and recyclable. Beyond coatings, Solenis' dry strength additives (e.g., Hercobond™ and Biobond™) allow papermakers to lightweight packaging, substitute more recycled fiber for virgin wood pulp, and improve the overall strength and performance of paper. These solutions directly reduce dependence on virgin fiber inputs and extend the life cycle of existing forest resources. At the same time, they generate measurable sustainability value, such as reductions in energy and water use, lower shipping volumes, and thus lower greenhouse gas emissions. These opportunities have a substantive impact by opening new markets and positions Solenis as a key enabler of circular, forest-positive value chains, while helping customers reduce deforestation drivers linked to single-use plastics.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Increased revenues resulting from increased demand for products and services

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

✓ Medium-term

✓ Long-term

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

✓ Likely (66-100%)

(3.6.1.12) Magnitude

Select from:

Medium

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Solenis anticipates that climate-related opportunities, especially growing demand for low-carbon, water-efficient, and circular solutions, will have a medium-to-high positive impact on our financial position, performance, and long-term cash flows across all time horizons. Our customers, particularly in water-intensive industries (e.g., pulp and paper, healthcare, food & beverage, water treatment), face increasing regulatory and market pressure to reduce emissions, conserve water, and build operational resilience. This is accelerating demand for sustainable solutions, an area where Solenis is strategically positioned to lead. In 2024, ~73% of our revenue was derived from innovative and sustainable products. We embed climate opportunity into our core business model. Solenis invests 1.4% of its annual revenue into R&D and has committed that by 2030, 90% of all innovation projects will focus on sustainability, with 30% specifically focused on carbon footprint reduction. We expect this pipeline to significantly enhance revenue, margins, and competitive advantage, particularly in high-growth regions impacted by water stress and carbon pricing. Revenue calculations for the pilot product GPAM across various IEA scenarios and time horizons revealed that climate/sustainability-focused revenue growth would be the main differentiator of Solenis in the market nd help expand Solenis's market share in sustainability-focused segments. As the global water treatment and decarbonization markets continue to grow, we expect climate-driven opportunities to play a central role in our financial performance—generating recurring revenue, stable cash flows, and enhanced access to green capital.

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

✓ No

(3.6.1.24) Cost to realize opportunity

0

(3.6.1.25) Explanation of cost calculation

We do not assign a separate or incremental cost solely to realizing the opportunity of a particular product, as it is part of our core innovation strategy. We invest approximately 1.4% of our total revenue yearly in research and development, consistent with our long-term commitment to sustainability-led innovation. These investments support both short-term reformulations and long-term solutions across our water treatment and specialty chemicals businesses. Many of these innovations, such as LESSEAU™ solid soap, Kymene™ bio-based resins, and Clax™ Polar water-saving systems, are also aligned with sustainability opportunity categories and the fruit of our consistent investment in R&D.

(3.6.1.26) Strategy to realize opportunity

Solenis's strategy to realize climate-related opportunities is centered on innovation, product change, and customer decarbonization. Recognizing the growing global demand for low-carbon, water-efficient, and circular solutions, we have embedded sustainability into our core business strategy, product development process, and capital allocation priorities. Our pilot climate opportunity quantification, aligned with TCFD, clearly demonstrated a tangible financial benefit of climate-aligned innovation and strengthened internal buy-in for expanded product-level opportunity analysis. To scale such an approach, Solenis has activated the following strategies: R&D Investment: We invest ~1.4% of total revenue in innovation annually. Innovation and sustainability are embedded in our sustainability goals: 90% of innovation projects will be sustainability-focused, with 30% targeting direct carbon footprint reduction by 2030. We also work on reducing the carbon footprint of every product. Strengthening our R&D infrastructure: in 2024, we established the Global Technology Office to unify innovation across Solenis, Sigura, and Diversey legacy

portfolios, ensuring synergies in sustainable and circular product design. It includes 13 R&D facilities, 9 application labs, and employs 500+ R&D staff globally, enabling rapid scale-up of climate-aligned technologies. Open Innovation collaboration: We partner with universities, government agencies, and cleantech start-ups to co-develop new chemistries, especially in water reuse, scale inhibition, and biobased packaging. Our future efforts will expand to product-level innovations, reducing carbon footprint, supporting investment decisions, and capitalizing on Solenis's leadership in sustainable chemistry.

Water

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp2

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Markets

☑ Expansion into new markets

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

✓ Downstream value chain

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

✓ Peru
✓ Chile
✓ Kenya
✓ China
✓ Spain
✓ Egypt
✓ India
✓ Canada

✓ France
✓ Rwanda

✓ Greece ✓ Sweden

✓ Israel
✓ Turkey

- Mexico
- Poland
- ✓ Belgium
- Czechia
- Denmark
- ✓ Finland
- ✓ Germany
- Colombia
- Malaysia
- Pakistan
- Portugal
- ✓ Slovakia
- ✓ Indonesia
- Singapore
- ✓ Costa Rica
- ✓ Netherlands
- ✓ New Zealand
- ☑ Republic of Korea
- ✓ Russian Federation
- ✓ Hong Kong SAR, China
- ✓ United Arab Emirates
- ✓ United States of America

- Uganda
- Austria
- Hungary
- ✓ Ireland
- Morocco
- Nigeria
- ✓ Romania
- Thailand
- Viet Nam
- Argentina
- Australia
- ✓ Guatemala
- Philippines
- Switzerland
- ✓ Saudi Arabia
- ✓ South Africa
- ✓ Taiwan, China
- ✓ United Republic of Tanzania
- ✓ United Kingdom of Great Britain and Northern Ireland

(3.6.1.6) River basin where the opportunity occurs

Select all that apply

Unknown

(3.6.1.8) Organization specific description

As a global leader in water treatment, Solenis advances water-smart technologies that reduce freshwater use, enhance reuse, and minimize discharge, addressing global water stress while driving commercial growth. Our R&D portfolio includes circular chemistries, corrosion and scale inhibitors, and wastewater optimization solutions. We collaborate with global partners (e.g., Wetsus, German research institutes) on advanced treatment methods such as reverse osmosis, nanofiltration, and microplastics removal. In 2024, we launched LESSEAU™, a solid hand-wash bar with 95% less water and zero plastic, which won dual sustainability awards at Interclean Amsterdam. Solenis's innovations support industrial reuse, regulatory compliance, and water resilience—especially in high-stress regions—while strengthening customer relationships and market leadership. Our water-focused strategy aligns with our broader sustainability goals and accelerates the transition to a low-impact, resource-efficient economy.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Increased revenues through access to new and emerging markets

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

✓ Medium-term

✓ Long-term

(3.6.1.11) Likelihood of the opportunity having an effect within the anticipated time horizon

Select from:

✓ Likely (66-100%)

(3.6.1.12) Magnitude

Select from:

✓ High

(3.6.1.14) Anticipated effect of the opportunity on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Solenis anticipates that climate-related opportunities, especially growing demand for low-carbon, water-efficient, and circular solutions, will have a medium-to-high positive impact on our financial position, performance, and long-term cash flows across all time horizons. Our customers, particularly in water-intensive industries (e.g., pulp and paper, healthcare, food & beverage, water treatment), face increasing regulatory and market pressure to reduce emissions, conserve water, and build operational resilience. This is accelerating demand for sustainable solutions, an area where Solenis is strategically positioned to lead. In 2024, ~73% of our revenue

was derived from innovative and sustainable products. We embed climate opportunity into our core business model. Solenis invests 1.4% of its annual revenue into R&D and has committed that by 2030, 90% of all innovation projects will focus on sustainability, with 30% specifically focused on carbon footprint reduction. We expect this pipeline to significantly enhance revenue, margins, and competitive advantage, particularly in high-growth regions impacted by water stress and carbon pricing. Revenue calculations for the pilot product GPAM across various IEA scenarios and time horizons revealed that climate/sustainability-focused revenue growth would be the main differentiator of Solenis in the market nd help expand Solenis's market share in sustainability-focused segments. As the global water treatment and decarbonization markets continue to grow, we expect climate-driven opportunities to play a central role in our financial performance—generating recurring revenue, stable cash flows, and enhanced access to green capital.

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

✓ No

(3.6.1.24) Cost to realize opportunity

0

(3.6.1.25) Explanation of cost calculation

We do not assign a separate or incremental cost solely to realizing the opportunity of a particular product, as it is part of our core innovation strategy. We invest approximately 1.4% of our total revenue yearly in research and development, consistent with our long-term commitment to sustainability-led innovation. These investments support both short-term reformulations and long-term solutions across our water treatment and specialty chemicals businesses. Many of these innovations, such as LESSEAU™ solid soap, Kymene™ bio-based resins, and Clax™ Polar water-saving systems, are also aligned with sustainability opportunity categories and the fruit of our consistent investment in R&D.

(3.6.1.26) Strategy to realize opportunity

Solenis's strategy to realize climate-related opportunities is centered on innovation, product transformation, and customer decarbonization. Recognizing the growing global demand for low-carbon, water-efficient, and circular solutions, we have embedded sustainability into our core business strategy, product development process, and capital allocation priorities. Our pilot climate opportunity quantification, aligned with TCFD, clearly demonstrated a tangible financial benefit of climate-aligned innovation and strengthened internal buy-in for expanded product-level opportunity analysis. To scale such an approach, Solenis has activated the following strategies: R&D Investment: We invest ~1.4% of total revenue in innovation annually. Innovation and sustainability are embedded in our sustainability goals: 90% of innovation projects will be sustainability-focused, with 30% targeting direct carbon footprint reduction by 2030. We also work on reducing the carbon footprint of every product. Strengthening our R&D infrastructure: in 2024, we established the Global Technology Office to unify innovation across Solenis, Sigura, and Diversey legacy portfolios, ensuring synergies in sustainable and circular product design. It includes 13 R&D facilities, 9 application labs, and employs 500+ R&D staff globally, enabling rapid scale-up of climate-aligned technologies. Open Innovation collaboration: We partner with universities, government agencies, and cleantech start-ups to co-develop new chemistries, especially in water reuse, scale inhibition, and biobased packaging. Our future efforts will expand to product-level innovations, reducing carbon footprint, supporting investment decisions, and capitalizing on Solenis's leadership in sustainable chemistry.

(3.6.2) Provide the amount and proportion of your financial metrics in the reporting year that are aligned with the substantive effects of environmental opportunities.

Climate change

(3.6.2.1) Financial metric

Select from:

Revenue

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

5325000000

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

✓ 71-80%

(3.6.2.4) Explanation of financial figures

In FY2024, Solenis generated total revenue of \$7,324 billion, of which \$5,325 billion (73%) is classified as aligned with the substantive effects of environmental opportunities. This proportion was derived by mapping each Strategic Business Unit's (SBU) product portfolio to environmental opportunity categories (resource efficiency, pollution prevention, circular economy, sustainable water management, and low-carbon solutions). We assessed each SBU against defined sustainability criteria to determine Sustainable Revenue 2024. These criteria include: Products enabling water savings, reuse, and quality improvements (e.g., Flocculants & Coagulants, Cooling & Boiler Water Treatment). Materials and additives that replace plastics, increase recyclability, extend product lifespans, or improve composability (e.g., Sizing Agents, Coatings, Barriers & Colorants). Solutions delivering energy efficiency, process optimization, and lower carbon intensity (e.g., Antifoams, Retention & Drainage Aids, Microbiological Control). Offerings that reduce chemical consumption through controlled dosing, concentrated formulations, and reusable systems (e.g., Kitchen Care, Building Care, CIP Cleaning). Products contributing to renewable fuels and bio-based feedstocks (e.g., Biorefining Additives). Revenue classification was based on FY2024 audited sales by SBU, cross-referenced with product-level environmental benefit descriptions from internal product stewardship documentation, Life Cycle Assessment data where available, and validated sustainability claims (e.g., EcoLabel certifications, SURE range compliance, PFAS-free formulations). Only those sales meeting the defined sustainability criteria were counted toward the sustainable revenue total; partially aligned

product lines were proportionately allocated based on the eligible product mix. The resulting 73% alignment reflects Solenis's strategic focus on enabling customer sustainability outcomes, with a significant portion of revenue linked to circular economy, water stewardship, and decarbonization solutions.

Forests

(3.6.2.1) Financial metric

Select from:

Revenue

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

5325000000

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

☑ 71-80%

(3.6.2.4) Explanation of financial figures

In FY2024, Solenis generated total revenue of \$7,324 billion, of which \$5,325 billion (73%) is classified as aligned with the substantive effects of environmental opportunities. This proportion was derived by mapping each Strategic Business Unit's (SBU) product portfolio to environmental opportunity categories (resource efficiency, pollution prevention, circular economy, sustainable water management, and low-carbon solutions). We assessed each SBU against defined sustainability criteria to determine Sustainable Revenue 2024. These criteria include: Products enabling water savings, reuse, and quality improvements (e.g., Flocculants & Coagulants, Cooling & Boiler Water Treatment). Materials and additives that replace plastics, increase recyclability, extend product lifespans, or improve compostability (e.g., Sizing Agents, Coatings, Barriers & Colorants). Solutions delivering energy efficiency, process optimization, and lower carbon intensity (e.g., Antifoams, Retention & Drainage Aids, Microbiological Control). Offerings that reduce chemical consumption through controlled dosing, concentrated formulations, and reusable systems (e.g., Kitchen Care, Building Care, CIP Cleaning). Products contributing to renewable fuels and bio-based feedstocks (e.g., Biorefining Additives). Revenue classification was based on FY2024 audited sales by SBU, cross-referenced with product-level environmental benefit descriptions from internal product stewardship documentation, Life Cycle Assessment data where available, and validated sustainability claims (e.g., EcoLabel certifications, SURE range compliance, PFAS-free formulations). Only those sales meeting the defined sustainability criteria were counted toward the sustainable revenue total; partially aligned product lines were proportionately allocated based on the eligible product mix. The resulting 73% alignment reflects Solenis's strategic focus on enabling customer sustainability outcomes, with a significant portion of revenue linked to circular economy, water stewardship, and d

Water

(3.6.2.1) Financial metric

Select from:

Revenue

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

3274000000

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

✓ 41-50%

(3.6.2.4) Explanation of financial figures

In FY2024, Solenis generated total revenue of \$7,324 billion, of which \$3,274 billion (45%) is attributable to products and solutions that directly enable water-related environmental opportunities, including water efficiency, reuse, recycling, quality improvement, and sustainable water management. This figure was derived by identifying Strategic Business Units (SBUs) whose products demonstrably deliver substantive water benefits. Sustainable revenue for this category includes products that: Improve water quality through removal of contaminants, reduction of microbiological growth, and prevention of biofilm formation. Enable water reuse and recycling in industrial processes, thereby reducing freshwater withdrawals. Enhance water-use efficiency via process optimization, controlled dosing, and reduced cleaning water demand. Support the water stewardship goals of customers in high-water-stress regions. Revenue classification was based on audited FY2024 sales by SBU, cross-checked against product sustainability profiles, Life Cycle Assessment results (where available), and verified sustainability claims (e.g., EcoLabel certifications, PFAS-free formulations). Only those sales meeting defined water sustainability criteria were included. This 42% water-aligned revenue underscores Solenis's role in enabling customers to address water scarcity, reduce operating costs, and meet water stewardship targets, particularly in high-risk geographies. [Add row]

C4. Governance

(4.1) Does your organization have a board of directors or an equivalent governing body?

(4.1.1) Board of directors or equivalent governing body

Select from:

Yes

(4.1.2) Frequency with which the board or equivalent meets

Select from:

✓ More frequently than quarterly

(4.1.3) Types of directors your board or equivalent is comprised of

Select all that apply

- ☑ Executive directors or equivalent
- ✓ Non-executive directors or equivalent
- ✓ Independent non-executive directors or equivalent

(4.1.4) Board diversity and inclusion policy

Select from:

✓ No

[Fixed row]

(4.1.1) Is there board-level oversight of environmental issues within your organization?

	Board-level oversight of this environmental issue
Climate change	Select from: ✓ Yes
Forests	Select from: ✓ Yes
Water	Select from: ✓ Yes
Biodiversity	Select from: ✓ Yes

[Fixed row]

(4.1.2) Identify the positions (do not include any names) of the individuals or committees on the board with accountability for environmental issues and provide details of the board's oversight of environmental issues.

Climate change

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

☑ Board-level committee

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

✓ Board Terms of Reference

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in every board meeting (standing agenda item)

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

☑ Reviewing and guiding annual budgets

✓ Overseeing and guiding scenario analysis

✓ Overseeing the setting of corporate targets

☑ Monitoring progress towards corporate targets

☑ Approving corporate policies and/or commitments

✓ Overseeing and guiding the development of a business strategy

✓ Overseeing and guiding acquisitions, mergers, and divestitures

☑ Monitoring supplier compliance with organizational requirements

✓ Overseeing and guiding the development of a climate transition plan

☑ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

☑ Reviewing and guiding innovation/R&D priorities

✓ Overseeing and guiding major capital expenditures

✓ Monitoring the implementation of the business strategy

✓ Overseeing reporting, audit, and verification processes

✓ Monitoring the implementation of a climate transition plan

(4.1.2.7) Please explain

The primary duty of the Sustainability Committee is to assist the Board in its oversight of the Solenis ESG+C™ strategy, including progress on targets, reporting efforts, organizational structure, budgeting, compliance with ESG regulations, and sustainable value creation in line with the Company's overall business strategy. The Committee has been entrusted by the Board to provide specialized focus, oversight and guidance on the following aspects relating to ESG: • Sustainability related strategic priorities and targets. • Social impact, employee wellbeing, DE&I • Impacts, risk and opportunity update — trends, strategic engagement options and targets • Non-financial, voluntary, and mandatory disclosure and assurance evolution • Sustainability trends in the financial sector • How to grow sales with a sustainability value proposition. The composition of the Sustainability Committee will be reviewed by the Board annually and changes made as needed. The Committee shall include at least one non-board member and at least five (5) total members

Forests

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

☑ Board-level committee

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

✓ No

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in every board meeting (standing agenda item)

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

☑ Reviewing and guiding annual budgets

✓ Overseeing and guiding scenario analysis

✓ Overseeing the setting of corporate targets

☑ Monitoring progress towards corporate targets

☑ Approving corporate policies and/or commitments

✓ Overseeing and guiding acquisitions, mergers, and divestitures

✓ Monitoring supplier compliance with organizational requirements

☑ Monitoring compliance with corporate policies and/or commitments

✓ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

☑ Reviewing and guiding innovation/R&D priorities

✓ Overseeing and guiding major capital expenditures

✓ Monitoring the implementation of the business strategy

✓ Overseeing reporting, audit, and verification processes

✓ Overseeing and guiding the development of a business strategy

(4.1.2.7) Please explain

The primary duty of the Sustainability Committee is to assist the Board in its oversight of the Solenis ESG+C™ strategy, including progress on targets, reporting efforts, organizational structure, budgeting, compliance with ESG regulations, and sustainable value creation in line with the Company's overall business strategy. The Committee has been entrusted by the Board to provide specialized focus, oversight and guidance on the following aspects relating to ESG: • Sustainability related strategic priorities and targets. • Social impact, employee wellbeing, DE&I • Impacts, risk and opportunity update — trends, strategic engagement options and

targets • Non-financial, voluntary, and mandatory disclosure and assurance evolution • Sustainability trends in the financial sector • How to grow sales with a sustainability value proposition. The composition of the Sustainability Committee will be reviewed by the Board annually and changes made as needed. The Committee shall include at least one non-board member and at least five (5) total members

Water

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

☑ Board-level committee

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

✓ Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

Select all that apply

☑ Board Terms of Reference

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in every board meeting (standing agenda item)

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

- ☑ Reviewing and guiding annual budgets
- ✓ Overseeing and guiding scenario analysis
- ✓ Overseeing the setting of corporate targets
- ✓ Monitoring progress towards corporate targets
- ☑ Approving corporate policies and/or commitments

- ☑ Reviewing and guiding innovation/R&D priorities
- ✓ Overseeing and guiding major capital expenditures
- ✓ Monitoring the implementation of the business strategy
- ✓ Overseeing reporting, audit, and verification processes
- ✓ Overseeing and guiding acquisitions, mergers, and divestitures

- ✓ Monitoring supplier compliance with organizational requirements
- ✓ Monitoring compliance with corporate policies and/or commitments
- ☑ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

(4.1.2.7) Please explain

The primary duty of the Sustainability Committee is to assist the Board in its oversight of the Solenis ESG+C™ strategy, including progress on targets, reporting efforts, organizational structure, budgeting, compliance with ESG regulations, and sustainable value creation in line with the Company's overall business strategy. The Committee has been entrusted by the Board to provide specialized focus, oversight and guidance on the following aspects relating to ESG: • Sustainability related strategic priorities and targets. • Social impact, employee wellbeing, DE&I • Impacts, risk and opportunity update — trends, strategic engagement options and targets • Non-financial, voluntary, and mandatory disclosure and assurance evolution • Sustainability trends in the financial sector • How to grow sales with a sustainability value proposition. The composition of the Sustainability Committee will be reviewed by the Board annually and changes made as needed. The Committee shall include at least one non-board member and at least five (5) total members

Biodiversity

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

☑ Board-level committee

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

✓ No

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in every board meeting (standing agenda item)

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

☑ Reviewing and guiding annual budgets

✓ Overseeing and guiding major capital expenditures

- ✓ Overseeing and guiding scenario analysis
- ✓ Overseeing the setting of corporate targets
- ☑ Approving corporate policies and/or commitments
- ☑ Reviewing and guiding innovation/R&D priorities
- ✓ Monitoring compliance with corporate policies and/or commitments
- ☑ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

- ✓ Monitoring the implementation of the business strategy
- ✓ Overseeing reporting, audit, and verification processes
- ✓ Overseeing and guiding acquisitions, mergers, and divestitures
- ☑ Monitoring supplier compliance with organizational requirements

(4.1.2.7) Please explain

The primary duty of the Sustainability Committee is to assist the Board in its oversight of the Solenis ESG+C[™] strategy, including progress on targets, reporting efforts, organizational structure, budgeting, compliance with ESG regulations, and sustainable value creation in line with the Company's overall business strategy. The Committee has been entrusted by the Board to provide specialized focus, oversight and guidance on the following aspects relating to ESG: • Sustainability related strategic priorities and targets. • Social impact, employee wellbeing, DE&I • Impacts, risk and opportunity update — trends, strategic engagement options and targets • Non-financial, voluntary, and mandatory disclosure and assurance evolution • Sustainability trends in the financial sector • How to grow sales with a sustainability value proposition. The composition of the Sustainability Committee will be reviewed by the Board annually and changes made as needed. The Committee shall include at least one non-board member and at least five (5) total members [Fixed row]

(4.2) Does your organization's board have competency on environmental issues?

Climate change

(4.2.1) Board-level competency on this environmental issue

Select from:

Yes

(4.2.2) Mechanisms to maintain an environmentally competent board

Select all that apply

- ☑ Consulting regularly with an internal, permanent, subject-expert working group
- ☑ Engaging regularly with external stakeholders and experts on environmental issues
- ☑ Having at least one board member with expertise on this environmental issue

(4.2.3) Environmental expertise of the board member

Experience

- ☑ Executive-level experience in a role focused on environmental issues
- ☑ Management-level experience in a role focused on environmental issues

Forests

(4.2.1) Board-level competency on this environmental issue

Select from:

Yes

(4.2.2) Mechanisms to maintain an environmentally competent board

Select all that apply

- ✓ Consulting regularly with an internal, permanent, subject-expert working group
- ☑ Engaging regularly with external stakeholders and experts on environmental issues
- ☑ Having at least one board member with expertise on this environmental issue

(4.2.3) Environmental expertise of the board member

Experience

- ☑ Executive-level experience in a role focused on environmental issues
- ☑ Management-level experience in a role focused on environmental issues

Water

(4.2.1) Board-level competency on this environmental issue

Select from:

✓ Yes

(4.2.2) Mechanisms to maintain an environmentally competent board

Select all that apply

- ☑ Consulting regularly with an internal, permanent, subject-expert working group
- ☑ Engaging regularly with external stakeholders and experts on environmental issues
- ☑ Having at least one board member with expertise on this environmental issue

(4.2.3) Environmental expertise of the board member

Experience

- ☑ Executive-level experience in a role focused on environmental issues
- ☑ Management-level experience in a role focused on environmental issues

[Fixed row]

(4.3) Is there management-level responsibility for environmental issues within your organization?

	Management-level responsibility for this environmental issue
Climate change	Select from: ☑ Yes
Forests	Select from: ✓ Yes
Water	Select from: ☑ Yes
Biodiversity	Select from: ☑ Yes

(4.3.1) Provide the highest senior management-level positions or committees with responsibility for environmental issues (do not include the names of individuals).

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Sustainability Officer (CSO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ✓ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Engagement

- ☑ Managing public policy engagement related to environmental issues
- ☑ Managing supplier compliance with environmental requirements
- ☑ Managing value chain engagement related to environmental issues

Policies, commitments, and targets

- ☑ Measuring progress towards environmental corporate targets
- ☑ Measuring progress towards environmental science-based targets
- ☑ Setting corporate environmental policies and/or commitments
- ☑ Setting corporate environmental targets

Strategy and financial planning

✓ Developing a climate transition plan

- ✓ Implementing a climate transition plan
- ✓ Conducting environmental scenario analysis
- ☑ Managing annual budgets related to environmental issues
- ✓ Developing a business strategy which considers environmental issues
- ☑ Managing environmental reporting, audit, and verification processes
- ✓ Managing priorities related to innovation/low-environmental impact products or services (including R&D)

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

Quarterly

(4.3.1.6) Please explain

The CSO reports to the Board Sustainability Committee on a quarterly basis. The CSO leads the sustainability Leadership team that is made up of representatives from Human Resources, Legal, Finance, Business Development, Operations including environment, health and safety, Procurement, Communications and Investor Relations

Forests

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Sustainability Officer (CSO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Engagement

- ☑ Managing public policy engagement related to environmental issues
- ☑ Managing supplier compliance with environmental requirements
- ☑ Managing value chain engagement related to environmental issues

Policies, commitments, and targets

- ☑ Measuring progress towards environmental corporate targets
- ☑ Setting corporate environmental policies and/or commitments
- ☑ Setting corporate environmental targets

Strategy and financial planning

- ✓ Developing a climate transition plan
- ✓ Implementing a climate transition plan
- ✓ Conducting environmental scenario analysis
- ☑ Managing annual budgets related to environmental issues
- ✓ Implementing the business strategy related to environmental issues
- ✓ Developing a business strategy which considers environmental issues
- ☑ Managing environmental reporting, audit, and verification processes
- ✓ Managing priorities related to innovation/low-environmental impact products or services (including R&D)

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

Quarterly

(4.3.1.6) Please explain

The CSO reports to the Board Sustainability Committee on a quarterly basis. The CSO leads the sustainability Leadership team that is made up of representatives from Human Resources, Legal, Finance, Business Development, Operations including environment, health and safety, Procurement, Communications and Investor Relations

Water

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Sustainability Officer (CSO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Engagement

- ☑ Managing public policy engagement related to environmental issues
- ☑ Managing supplier compliance with environmental requirements
- ☑ Managing value chain engagement related to environmental issues

Policies, commitments, and targets

- ☑ Monitoring compliance with corporate environmental policies and/or commitments
- ☑ Measuring progress towards environmental corporate targets
- ✓ Setting corporate environmental policies and/or commitments
- ☑ Setting corporate environmental targets

Strategy and financial planning

- ✓ Developing a climate transition plan
- ✓ Implementing a climate transition plan
- ✓ Conducting environmental scenario analysis
- ☑ Managing annual budgets related to environmental issues
- ✓ Implementing the business strategy related to environmental issues
- ☑ Developing a business strategy which considers environmental issues
- ☑ Managing environmental reporting, audit, and verification processes
- ✓ Managing priorities related to innovation/low-environmental impact products or services (including R&D)

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

Quarterly

(4.3.1.6) Please explain

The CSO reports to the Board Sustainability Committee on a quarterly basis. The CSO leads the sustainability Leadership team that is made up of representatives from Human Resources, Legal, Finance, Business Development, Operations including environment, health and safety, Procurement, Communications and Investor Relations

Biodiversity

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Sustainability Officer (CSO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Assessing future trends in environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Engagement

- ☑ Managing public policy engagement related to environmental issues
- ☑ Managing supplier compliance with environmental requirements
- ☑ Managing value chain engagement related to environmental issues

Policies, commitments, and targets

- ✓ Monitoring compliance with corporate environmental policies and/or commitments
- Measuring progress towards environmental corporate targets
- ☑ Setting corporate environmental policies and/or commitments
- ☑ Setting corporate environmental targets

Strategy and financial planning

- ✓ Conducting environmental scenario analysis
- ☑ Managing annual budgets related to environmental issues
- ✓ Implementing the business strategy related to environmental issues
- ✓ Developing a business strategy which considers environmental issues
- ☑ Managing environmental reporting, audit, and verification processes
- ☑ Managing priorities related to innovation/low-environmental impact products or services (including R&D)

(4.3.1.4) Reporting line

Select from:

☑ Reports to the Chief Executive Officer (CEO)

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

Quarterly

(4.3.1.6) Please explain

The CSO reports to the Board Sustainability Committee on a quarterly basis. The CSO leads the sustainability Leadership team that is made up of representatives from Human Resources, Legal, Finance, Business Development, Operations including environment, health and safety, Procurement, Communications and Investor Relations
[Add row]

(4.5) Do you provide monetary incentives for the management of environmental issues, including the attainment of targets?

	Provision of monetary incentives related to this environmental issue	Please explain
Climate change	Select from: ✓ No, but we plan to introduce them in the next two years	Monetary incentives are not yet provided for board members for environmental issues. A proposal for these incentives is being developed.
Forests	Select from: ✓ No, but we plan to introduce them in the next two years	Monetary incentives are not yet provided for board members for environmental issues. A proposal for these incentives is being developed.
Water	Select from: ✓ No, but we plan to introduce them in the next two years	Monetary incentives are not yet provided for board members for environmental issues. A proposal for these incentives is being developed.

[Fixed row]

(4.6) Does your organization have an environmental policy that addresses environmental issues?	
	Does your organization have any environmental policies?
	Select from:
[Fixed revol	✓ Yes
[Fixed row]	
(4.6.1) Provide details of your environ	mental policies.
Row 1	
(4.6.1.1) Environmental issues covere	d
Select all that apply ✓ Climate change ✓ Forests ✓ Water	
✓ Biodiversity	
(4.6.1.2) Level of coverage	
Select from: ✓ Organization-wide	
(4.6.1.3) Value chain stages covered	
Select all that apply	

✓ Direct operations

- ✓ Upstream value chain
- ✓ Downstream value chain

(4.6.1.4) Explain the coverage

This sustainability policy covers all Solenis businesses, subsidiaries, offices, warehouses, manufacturing facilities and operations globally

(4.6.1.5) Environmental policy content

Environmental commitments

- ✓ Commitment to avoidance of negative impacts on threatened and protected species
- ☑ Commitment to comply with regulations and mandatory standards
- ☑ Commitment to take environmental action beyond regulatory compliance
- ☑ Commitment to respect legally designated protected areas
- ☑ Commitment to stakeholder engagement and capacity building on environmental issues

Climate-specific commitments

✓ Commitment to net-zero emissions

Water-specific commitments

- ☑ Commitment to reduce or phase out hazardous substances
- ☑ Commitment to control/reduce/eliminate water pollution
- ☑ Commitment to reduce water consumption volumes
- ☑ Commitment to reduce water withdrawal volumes
- ☑ Commitment to water stewardship and/or collective action

Social commitments

- ☑ Adoption of the UN International Labour Organization principles
- ✓ Commitment to promote gender equality and women's empowerment
- ✓ Commitment to respect internationally recognized human rights

Additional references/Descriptions

☑ Description of environmental requirements for procurement

- ☑ Description of grievance/whistleblower mechanism to monitor non-compliance with the environmental policy and raise/address/escalate any other greenwashing concerns
- ☑ Reference to timebound environmental milestones and targets

(4.6.1.6) Indicate whether your environmental policy is in line with global environmental treaties or policy goals

Select all that apply

- ✓ Yes, in line with the Paris Agreement
- ☑ Yes, in line with Sustainable Development Goal 6 on Clean Water and Sanitation

(4.6.1.7) Public availability

Select from:

☑ Publicly available

(4.6.1.8) Attach the policy

sustainability-v3.pdf

Row 2

(4.6.1.1) Environmental issues covered

Select all that apply

- ✓ Climate change
- Water
- ☑ Biodiversity

(4.6.1.2) Level of coverage

Select from:

✓ Organization-wide

(4.6.1.3) Value chain stages covered

Select all that apply

- Direct operations
- ✓ Upstream value chain
- ✓ Downstream value chain

(4.6.1.4) Explain the coverage

This Human Rights policy covers all Solenis businesses, subsidiaries, offices, warehouses, manufacturing facilities and operations globally

(4.6.1.5) Environmental policy content

Environmental commitments

- ☑ Commitment to comply with regulations and mandatory standards
- ☑ Commitment to stakeholder engagement and capacity building on environmental issues

Water-specific commitments

☑ Commitment to control/reduce/eliminate water pollution

Social commitments

- ✓ Adoption of the UN International Labour Organization principles
- ☑ Commitment to promote gender equality and women's empowerment
- ☑ Commitment to respect and protect the customary rights to land, resources, and territory of Indigenous Peoples and Local Communities
- ✓ Commitment to respect internationally recognized human rights
- ✓ Commitment to secure Free, Prior, and Informed Consent (FPIC) of indigenous people and local communities

Additional references/Descriptions

- ✓ Acknowledgement of the human right to water and sanitation
- ✓ Description of biodiversity-related performance standards
- ☑ Description of grievance/whistleblower mechanism to monitor non-compliance with the environmental policy and raise/address/escalate any other greenwashing concerns

(4.6.1.6) Indicate whether your environmental policy is in line with global environmental treaties or policy goals

Select all that apply

- ☑ Yes, in line with Sustainable Development Goal 6 on Clean Water and Sanitation
- ✓ Yes, in line with another global environmental treaty or policy goal, please specify: International Covenant on Economic, Social and Cultural Rights, UNGP the OECD Guidlines of Muntinational Enterprises, UN Global Compact's ten Principlees and United Nations Sustainable Development Goals wich are material to our business.

(4.6.1.7) Public availability

Select from:

✓ Publicly available

(4.6.1.8) Attach the policy

human-rights-v1.pdf

Row 3

(4.6.1.1) Environmental issues covered

Select all that apply

- Forests
- ☑ Biodiversity

(4.6.1.2) Level of coverage

Select from:

✓ Organization-wide

(4.6.1.3) Value chain stages covered

Select all that apply

✓ Direct operations

- ✓ Upstream value chain
- Downstream value chain

(4.6.1.4) Explain the coverage

This Deforestation and Biodiversity policy covers all Solenis businesses, subsidiaries, offices, warehouses, manufacturing facilities and operations globally

(4.6.1.5) Environmental policy content

Environmental commitments

- ✓ Commitment to avoidance of negative impacts on threatened and protected species
- ☑ Commitment to comply with regulations and mandatory standards
- ✓ Commitment to stakeholder engagement and capacity building on environmental issues

Forests-specific commitments

- ☑ Commitment to no development on peat regardless of depth
- ☑ Commitment to no land clearance by burning or clearcutting
- ☑ Commitment to the use of the High Conservation Value (HCV) approach
- ☑ Other forests-related commitment, please specify: Protecting of high carbon stock (HCS) forest as well as critical habitats and biodiversity spots.

Additional references/Descriptions

- ✓ Description of biodiversity-related performance standards
- ✓ Description of commodities covered by the policy
- ☑ Description of environmental requirements for procurement
- ☑ Description of grievance/whistleblower mechanism to monitor non-compliance with the environmental policy and raise/address/escalate any other greenwashing concerns

(4.6.1.6) Indicate whether your environmental policy is in line with global environmental treaties or policy goals

Select all that apply

☑ Yes, in line with another global environmental treaty or policy goal, please specify: UICN's red list of threatend and no alien invasive spieses, RSPO

(4.6.1.7) Public availability

Select from:

☑ Publicly available

(4.6.1.8) Attach the policy

deforestation-and-biodiversity.pdf

Row 4

(4.6.1.1) Environmental issues covered

Select all that apply

- ✓ Climate change
- ✓ Forests
- Water
- ☑ Biodiversity

(4.6.1.2) Level of coverage

Select from:

✓ Organization-wide

(4.6.1.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain
- ✓ Downstream value chain

(4.6.1.4) Explain the coverage

This responsible care policy covers all Solenis business, subsidiaries, offices, warehouses, manufacturing facilities and operations globally

(4.6.1.5) Environmental policy content

Environmental commitments

- ☑ Commitment to comply with regulations and mandatory standards
- ✓ Commitment to take environmental action beyond regulatory compliance
- ☑ Commitment to respect legally designated protected areas
- ✓ Commitment to stakeholder engagement and capacity building on environmental issues

Water-specific commitments

- ☑ Commitment to reduce or phase out hazardous substances
- ☑ Commitment to control/reduce/eliminate water pollution

Social commitments

☑ Adoption of the UN International Labour Organization principles

Additional references/Descriptions

- ✓ Description of environmental requirements for procurement
- ✓ Description of membership and financial support provided to organizations that seek to influence public policy

(4.6.1.6) Indicate whether your environmental policy is in line with global environmental treaties or policy goals

Select all that apply

- ✓ Yes, in line with the Paris Agreement
- ✓ Yes, in line with Sustainable Development Goal 6 on Clean Water and Sanitation

(4.6.1.8) Attach the policy

responsible-care-english-v01.pdf [Add row]

(4.10) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

(4.10.1) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

Select from:

Yes

(4.10.2) Collaborative framework or initiative

Select all that apply

✓ CEO Water Mandate

UN Global Compact

- ✓ Water Action Hub (by CEO Water Mandate)
- ✓ Roundtable on Sustainable Palm Oil (RSPO)
- ☑ Science-Based Targets Initiative (SBTi)

✓ Task Force on Climate-related Financial Disclosures (TCFD)

(4.10.3) Describe your organization's role within each framework or initiative

TCFD: Solenis reports in alignment with the recommendations of the Financial Stability Board (FSB) Task Force on Climate-related Financial Disclosures (TCFD). In 2023, we completed our first TCFD-aligned climate risk assessment and scenario analysis and integrated both physical and transition risks into our enterprise risk management (ERM) framework. These climate-related risks are evaluated annually as part of our broader assessment of significant business risks. In 2024, we conducted the 2nd TCFD assessment, enhanced our methodology to reflect more rigorous assumptions, included newly acquired Diversey sites, and carried out the first quantification of climate risks and opportunities, strengthening our alignment with TCFD principles and reinforcing our commitment to environmental transparency. CEO Water Mandate: Solenis is a formal signatory to the CEO Water Mandate, a UN Global Compact initiative that mobilizes business leaders to advance water stewardship. As a signatory, we are committed to action across the Mandate's six core focus areas: direct operations, supply chain and watershed management, collective action, public policy, community engagement, and transparency. We embed these principles into our global water strategy and disclose progress through our annual sustainability report RSPO Member: Solenis supports the principles of the Roundtable on Sustainable Palm Oil (RSPO) through our Responsible Palm Oil Sourcing Policy. While our use of palm oil is limited, when we do source palm-derived materials, we prioritize suppliers who have formally signed the RSPO Code of Conduct. This policy commitment is publicly available in our sustainability regulatory library and demonstrates our approach to responsible sourcing and supply chain transparency. SBTi: Solenis is a formal signatory of the Science Based Targets initiative (SBTi), having committed in 2023 to developing near-term emissions reduction targets aligned with climate science. Our aim is to validate those science-based targets formally by September 2025, as part of our journey to net-zero carbon impact by 2050. This commitment supports our broader water stewardship efforts—reducing water-related emissions and carbon intensity contributes to sustainable water management across our operations. UN Global Compact: Solenis became a signatory to the UN Global Compact in May 2021. We are committed to its Ten Principles, including those related to environmental stewardship and water sustainability. Our actions in support of the UNGC include aligning company policies—such as our Supplier Code of Conduct and sustainability strategy—with responsible environmental practices. We submit an annual Communication on Progress, with our most recent submission published in 2024 Water Action Hub (by CEO Water Mandate): Solenis is a registered member of the Water Action Hub, the collaborative platform managed by the CEO Water Mandate to help companies engage in collective water stewardship. We use the Hub to monitor watershed risk and identify opportunities for collective action aligned with SDG 6 and water resilience strategies

(4.11) In the reporting year, did your organization engage in activities that could directly or indirectly influence policy, law, or regulation that may (positively or negatively) impact the environment?

(4.11.1) External engagement activities that could directly or indirectly influence policy, law, or regulation that may impact the environment

Select all that apply

✓ Yes, we engaged indirectly through, and/or provided financial or in-kind support to a trade association or other intermediary organization or individual whose activities could influence policy, law, or regulation

(4.11.2) Indicate whether your organization has a public commitment or position statement to conduct your engagement activities in line with global environmental treaties or policy goals

Select from:

✓ Yes, we have a public commitment or position statement in line with global environmental treaties or policy goals

(4.11.3) Global environmental treaties or policy goals in line with public commitment or position statement

Select all that apply

- ✓ Paris Agreement
- ☑ Sustainable Development Goal 6 on Clean Water and Sanitation

(4.11.4) Attach commitment or position statement

105522-lit-2024sustainabilityreport-en-wb-v2.pdf

(4.11.5) Indicate whether your organization is registered on a transparency register

Select from:

V No

(4.11.8) Describe the process your organization has in place to ensure that your external engagement activities are consistent with your environmental commitments and/or transition plan

A sustainability leadership team is place which is chaired by the Chief Sustainability Officer and is made up of senior managers representing key parts of the business, including legal, human resources, supply chain, procurement, finance and communications. This team meets weekly and reviews all sustainability related policies and commitments.

[Fixed row]

(4.11.2) Provide details of your indirect engagement on policy, law, or regulation that may (positively or negatively) impact the environment through trade associations or other intermediary organizations or individuals in the reporting year.

Row 1

(4.11.2.1) Type of indirect engagement

Select from:

✓ Indirect engagement via a trade association

(4.11.2.4) Trade association

North America

✓ American Chemistry Council

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

- ✓ Climate change
- ✓ Water

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

✓ Yes, we publicly promoted their current position

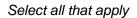
(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

We are consistent with the ACC positions as described in Responsible Care®: Driving Safety & Sustainability - American Chemistry Council. John Panichella, the Solenis CEO, was elected to serve in the Board of Directors for ACC in the period January 1, 2024 and ending December 31, 2026 American Chemistry Council Elects New Class to Board of Directors - American Chemistry Council. We have participation in meetings sharing our knowledge and contributing to best-practice and standards. Bringing also inputs back in Solenis sustainability work.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

30000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment


Membeship fee

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

- ✓ Paris Agreement
- ☑ Sustainable Development Goal 6 on Clean Water and Sanitation

Row 2

(4.11.2.1) Type of indirect engagement

Select from:

✓ Indirect engagement via a trade association

(4.11.2.4) Trade association

Europe

☑ European Chemical Industry Council (CEFIC) [CH only]

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

- ✓ Climate change
- Water

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

✓ No, we did not attempt to influence their position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

We are consistent with the positions as described on Position Papers - cefic. We have participation in meetings and working groups. Sharing our knowledge and contributing to best-practice and standards. Bringing inputs back in Solenis sustainability work.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

220000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Membership fee

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

✓ Paris Agreement

☑ Sustainable Development Goal 6 on Clean Water and Sanitation

Row 4

(4.11.2.1) Type of indirect engagement

Select from:

✓ Indirect engagement via a trade association

(4.11.2.4) Trade association

North America

✓ American Fuel & Petrochemical Manufacturers

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

- ✓ Climate change
- Water

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

✓ No, we did not attempt to influence their position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

We are consistent with their positions. We have participation in meetings and summits. Sharing our knowledge and contributing to best-practice and standards. Bringing also inputs back in Solenis sustainability work.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

47400

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Membership fee

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

- ✓ Paris Agreement
- ☑ Sustainable Development Goal 6 on Clean Water and Sanitation

Row 6

(4.11.2.1) Type of indirect engagement

Select from:

✓ Indirect engagement via a trade association

(4.11.2.4) Trade association

Europe

☑ Other trade association in Europe, please specify :Association for Soaps, Detergents and Maitenance Products (AISE)

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

- ✓ Climate change
- Water

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

✓ Yes, and they have changed their position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

We are consistent with AISE positions and priorities. We have participation in meetings and working groups. Sharing our knowledge and contributing to best-practice and standards. Bringing also inputs back in Solenis sustainability work. Examples: One representative from Diversey Solenis has been leading the AISE Ecolabel Working Group, another example A.I.S.E. members attend High-Level Implementation Dialogue on biocides - A.I.S.E.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

156000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Membership fee

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

- ✓ Paris Agreement
- ☑ Sustainable Development Goal 6 on Clean Water and Sanitation

Row 7

(4.11.2.1) Type of indirect engagement

Select from:

✓ Indirect engagement via a trade association

(4.11.2.4) Trade association

North America

☑ Other trade association in North America, please specify: Technical Association of the Pulp and Paper Intustry (TAPPI)

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

- ✓ Climate change
- Forests
- Water

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

✓ Yes, and they have changed their position

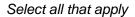
(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

We are consistent with their positions. We have participation in meetings and working groups. A representative from Solenis is also in the Board of TAPPI. TAPPI Announces Newly Elected Directors from Irving Consumer Products, Valmet and Auburn University Sharing our knowledge and contributing to best-practice and standards. Bringing also inputs back in Solenis sustainability work. Example: My TAPPI Story: Gabriele Pinckney. guest editor in a research paper TAPPI Journal Awards Best Research Paper for 2024

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

7000

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment


Membership fee

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

- ✓ Paris Agreement
- ☑ Sustainable Development Goal 6 on Clean Water and Sanitation

Row 8

(4.11.2.1) Type of indirect engagement

Select from:

✓ Indirect engagement via a trade association

(4.11.2.4) Trade association

Asia and Pacific

☑ Other trade association in Asia and Pacific, please specify: Association of international chemical manufacuters in China (AICM)

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

- ✓ Climate change
- Water

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

✓ Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

We are consistent with AICM position on Responsible care linked to sustainability. See recognition on our commitment (25) Post | LinkedIn. We have participation in meetings and working groups. Sharing our knowledge and contributing to best-practice and standards. Bringing also inputs back in Solenis sustainability work.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

25600

(4.11.2.10) Describe the aim of this funding and how it could influence policy, law or regulation that may impact the environment

Membership fee

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

✓ Paris Agreement

✓ Sustainable Development Goal 6 on Clean Water and Sanitation [Add row]

(4.12) Have you published information about your organization's response to environmental issues for this reporting year in places other than your CDP response?

Select from:

√ Yes

(4.12.1) Provide details on the information published about your organization's response to environmental issues for this reporting year in places other than your CDP response. Please attach the publication.

Row 1

(4.12.1.1) **Publication**

Select from:

☑ In mainstream reports, in line with environmental disclosure standards or frameworks

(4.12.1.2) Standard or framework the report is in line with

Select all that apply

✓ TCFD

(4.12.1.3) Environmental issues covered in publication

Select all that apply

✓ Climate change

(4.12.1.4) Status of the publication

Select from:

Complete

(4.12.1.5) Content elements

Select all that apply

- ✓ Governance
- ☑ Risks & Opportunities
- Strategy

Emission targets

(4.12.1.6) Page/section reference

Whole document

(4.12.1.7) Attach the relevant publication

2024-solenis-tcfd-report-v1.pdf

(4.12.1.8) Comment

Our Climate Risk and Opportunity Index is published on our website: https://sustainability.solenis.com/globalassets/resources/sustainability--regulatory-library/2024-solenis-tcfd-report-v1.pdf

Row 2

(4.12.1.1) **Publication**

Select from:

✓ In voluntary sustainability reports

(4.12.1.3) Environmental issues covered in publication

Select all that apply

- ✓ Climate change
- Water
- ☑ Biodiversity

(4.12.1.4) Status of the publication

Select from:

Complete

(4.12.1.5) Content elements

Select all that apply

- Strategy
- ✓ Governance

- ✓ Value chain engagement

- ☑ Biodiversity indicators
- ✓ Water accounting figures
- ☑ Content of environmental policies

(4.12.1.6) Page/section reference

Whole document

(4.12.1.7) Attach the relevant publication

105522-lit-2024sustainabilityreport-en-wb-v2.pdf

(4.12.1.8) Comment

The sustainability report is published on our website: https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/105522-lit-2024sustainabilityreport-en-wb-v2.pdf [Add row]

C5. Business strategy

(5.1) Does your organization use scenario analysis to identify environmental outcomes?

Climate change

(5.1.1) Use of scenario analysis

Select from:

Yes

(5.1.2) Frequency of analysis

Select from:

Forests

(5.1.1) Use of scenario analysis

Select from:

✓ No, and we do not plan to within the next two years

(5.1.3) Primary reason why your organization has not used scenario analysis

Select from:

✓ No standardized procedure

(5.1.4) Explain why your organization has not used scenario analysis

Forests have not been prioritized for scenario analysis; however, we recognize some exposure under the EU Deforestation Regulation (EUDR)—approximately 20–30 products and <2% of raw materials may be linked to deforestation. In response, Solenis has launched a compliance program to ensure all products and raw

materials mobilized from or for EU entities meet EUDR due diligence requirements by January 2026. We continue to monitor forest-related risks and may consider scenario analysis in future cycles as regulatory and stakeholder expectations evolve.

Water

(5.1.1) Use of scenario analysis

Select from:

Yes

(5.1.2) Frequency of analysis

Select from:

✓ Every two years

[Fixed row]

(5.1.1) Provide details of the scenarios used in your organization's scenario analysis.

Climate change

(5.1.1.1) Scenario used

Physical climate scenarios

☑ RCP 2.6

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

✓ SSP1

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- Acute physical
- Chronic physical

(5.1.1.6) Temperature alignment of scenario

Select from:

☑ 1.6°C - 1.9°C

(5.1.1.7) Reference year

2024

(5.1.1.8) Timeframes covered

Select all that apply

✓ 2030

2050

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

✓ Climate change (one of five drivers of nature change)

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Assumptions: Significant global emissions reductions limit global warming to below 2°C. Physical risks from extreme weather (heatwaves, droughts) are moderated but still increasing by 2050. Solenis sites experience moderate exposure to heat stress, water stress, and wildfire hazard (based on CIP analysis). Uncertainties: Regional climate model variability, policy effectiveness, and natural system feedback loops. Local implementation of climate adaptation infrastructure varies widely. Microclimate data availability can limit precision of adaptation planning. Constraints include lack of high-resolution long-term data on ecosystem thresholds.

(5.1.1.11) Rationale for choice of scenario

Solenis applied the SSP1-RCP2.6 scenario to evaluate strategic resilience in a low-physical risk world under a well-below 2°C warming pathway. This scenario represents a sustainability-focused future with successful global climate mitigation, characterized by rapid emissions reductions, strong institutions, and moderate physical climate impacts. SSP1-RCP2.6 was chosen for its credibility in peer-reviewed climate science and its alignment with the physical risk expectations in TCFD, ISSB recommendations.

Water

(5.1.1.1) Scenario used

Water scenarios

☑ WRI Aqueduct

(5.1.1.3) Approach to scenario

Select from:

Quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Facility

(5.1.1.5) Risk types considered in scenario

Select all that apply

Acute physical

Chronic physical

(5.1.1.7) Reference year

2024

(5.1.1.8) Timeframes covered

Select all that apply

✓ 2030

2050

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

✓ Climate change (one of five drivers of nature change)

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Assumptions: Based on WRI Business-As-Usual and Optimistic scenarios to 2030 and 2050. Water stress is projected to intensify in priority manufacturing regions. Solenis uses a geospatial overlay of WRI maps with facility data to identify priority sites. Uncertainties: Local catchment-level water governance and abstraction rights are difficult to predict. Data granularity varies across regions; some basins have outdated monitoring. Constraints: Limited control over shared water infrastructure (municipal systems), limitations in groundwater recharge forecasts, and a lack of integrated water-biodiversity thresholds.

(5.1.1.11) Rationale for choice of scenario

Solenis utilized the World Resources Institute (WRI) Aqueduct tool to assess short & long-term water-related risks at the facility level. This scenario framework was chosen due to its global coverage, sector-specific methodology, and compatibility with site-level water risk exposure analysis. By overlaying Aqueduct data with Solenis's facility footprint, the company identified locations with projected increases in baseline water stress and flood risk through 2030 and 2050. WRI's optimistic and business-as-usual pathways offer a robust range of potential futures, allowing Solenis to integrate water risk into investment and adaptation planning.

Climate change

(5.1.1.1) Scenario used

Climate transition scenarios

☑ IEA STEPS (previously IEA NPS)

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- ✓ Policy
- ✓ Market
- Reputation
- Technology
- Liability

(5.1.1.6) Temperature alignment of scenario

Select from:

✓ 2.5°C - 2.9°C

(5.1.1.7) Reference year

2024

(5.1.1.8) Timeframes covered

Select all that apply

☑ 2030

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

✓ Climate change (one of five drivers of nature change)

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Assumes current policy commitments are implemented without further tightening. Governments implement current national climate pledges without significant new ambition. Carbon pricing remains moderate, and technology adoption is uneven. Market and consumer responses to climate risks evolve more slowly, as do electricity grids, which decarbonize at a similar pace. Meanwhile, market demand for low-carbon solutions grows unevenly. Uncertainties: Political commitment to existing climate targets may weaken over time. Regional divergence in policy stringency may complicate global compliance efforts. Technology cost curves may not decrease uniformly. Constraints include uncertainty in forecasting regional regulatory timelines, price volatility in bio-based materials, and future infrastructure capacity. Solenis' ability to reduce Scope 2 emissions is limited by available PPAs and supplier disclosures.

(5.1.1.11) Rationale for choice of scenario

Solenis used the IEA Stated Policies (STEPS) scenario to model a plausible, moderate transition pathway in which countries implement current climate policies and pledges without increased ambition. This scenario serves as a critical benchmark for understanding Solenis's baseline exposure to transition risks under likely near-term government actions. STEPS reflects moderate regulatory tightening, gradual carbon pricing, and mixed global energy decarbonization—providing a realistic foundation for evaluating both transitional risks and strategic resilience. STEPS is widely used in industry and policy analyses and ensures internal consistency between scenario modeling and existing national-level climate policies and NDCs. It also enables comparative stress-testing of the NZE assumptions.

Climate change

(5.1.1.1) Scenario used

Climate transition scenarios

☑ IEA NZE 2050

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- Policy
- Market
- Reputation
- Technology
- ✓ Liability

(5.1.1.6) Temperature alignment of scenario

Select from:

✓ 1.5°C or lower

(5.1.1.7) Reference year

2024

(5.1.1.8) Timeframes covered

Select all that apply

- **2**030
- **☑** 2050

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

✓ Climate change (one of five drivers of nature change)

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Assumes full implementation of net-zero-aligned policies, rapid decarbonization in the chemical sector, technology innovation, customer demand for low-carbon and circular products, and carbon pricing mechanisms. Global energy systems undergo a radical shift toward electrification, energy efficiency, and zero-emissions fuels. Industrial decarbonization technologies such as hydrogen, carbon capture, and electrified heat processes reach commercial scalability by the mid-2030s. Uncertainties include the Timing and enforcement of global carbon markets and climate regulations. Rate of adoption and affordability of breakthrough technologies across emerging markets. Variable customer willingness to pay green premiums in different sectors. Constraints: Facility-level access to renewable electricity and green steam remains inconsistent. Global Scope 3 emissions visibility and data integrity remain challenging, particularly for suppliers in low-data jurisdictions.

(5.1.1.11) Rationale for choice of scenario

Solenis selected the IEA Net Zero Emissions by 2050 (NZE) scenario to assess company-wide exposure to transition risks and opportunities aligned with a 1.5°C global warming pathway. This scenario reflects a high-ambition decarbonization trajectory consistent with the Paris Agreement and provides insights into how rapidly shifting policies, technologies, and customer demands may reshape the chemicals and water treatment industry. NZE was prioritized because it incorporates critical variables such as carbon pricing, low-carbon technology adoption, electricity decarbonization, and regulatory tightening—all essential for assessing Solenis's long-term climate strategy, SBTi-aligned targets, and procurement and investment decisions. It supports robust alignment with TCFD, CSRD, and SBTi expectations for 1.5°C scenario inclusion.

Climate change

(5.1.1.1) Scenario used

Physical climate scenarios

☑ RCP 7.0

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

✓ SSP3

(5.1.1.3) Approach to scenario

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- Acute physical
- ☑ Chronic physical

(5.1.1.6) Temperature alignment of scenario

Select from:

☑ 3.5°C - 3.9°C

(5.1.1.7) Reference year

2024

(5.1.1.8) Timeframes covered

Select all that apply

☑ 2030

✓ 2050

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

✓ Climate change (one of five drivers of nature change)

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Weak global cooperation and limited mitigation efforts lead to >3°C warming by 2100. Assuming limited climate action, continued fossil fuel use, and insufficient adaptation, severe physical risks (e.g., extreme heat, floods, water stress), climate impacts become severe and widespread by 2050. Uncertainties include non-linear hazard intensification, interdependencies between climate systems, and societal responses. Location-specific impacts (flooding, water depletion) remain highly dependent on regional factors. Infrastructure resilience (power grid, water access) varies across jurisdictions. Climate-related migration and social instability could reshape labor markets. Constraints include gaps in region-specific adaptation data and assumptions about political stability. Escalating costs of adaptation under this scenario may exceed feasible investment levels. Insurance costs and coverage for physical climate risks may become prohibitive.

(5.1.1.11) Rationale for choice of scenario

The SSP3-RCP7.0 scenario was selected to explore worst-case physical climate risks to Solenis's operations under a fragmented world with limited climate action, leading to global warming above 3°C by 2100. This scenario reflects intensifying exposure to acute and chronic physical climate risks—including extreme heat, drought, water scarcity, flooding, and wildfires. It supports geographic stress-testing of Solenis's global value chain, including supplier, customer, and transportation dependencies. The selection of this scenario ensures compliance with CDP and TCFD guidance to assess a high-physical-risk pathway and identify potential vulnerabilities under severe climate disruption. It provides a counterpoint to the low-emissions scenario and informs Solenis's capital planning, insurance considerations, and facility resilience upgrades [Add row]

(5.1.2) Provide details of the outcomes of your organization's scenario analysis.

Climate change

(5.1.2.1) Business processes influenced by your analysis of the reported scenarios

Select all that apply

- ☑ Risk and opportunities identification, assessment and management
- ✓ Strategy and financial planning
- Resilience of business model and strategy
- Capacity building

(5.1.2.2) Coverage of analysis

Select from:

✓ Organization-wide

(5.1.2.3) Summarize the outcomes of the scenario analysis and any implications for other environmental issues

Transition Risk Findings: Under the IEA NZE scenario, Solenis identified significant risks tied to increasing carbon prices, where prices are projected to exceed \$205–300/tCO₂e by 2050. These would materially increase operational costs in regions with stringent carbon regimes, such as the EU and Canada. Market and reputational risks are amplified by shifts in consumer preferences, stakeholder expectations, and increased cost of raw materials. The Diversey acquisition expands Solenis' market presence, but increases exposure to environmental and geopolitical risks, necessitating product diversification, market monitoring, and investment in sustainable innovations. Technology-related risks: costs to transition to lower emissions technology are projected to be high in medium and long-term timeframes, though gradual substitution and R&D investments, leveraging government incentives for sustainable technologies, can help mitigate this. 2. Physical Risk Findings: Under SSP3-RCP7.0, physical risks such as heat stress, water stress, wildfire weather, and flooding are projected to increase significantly, particularly in Latin America, India, Southeast Asia, and the Southern U.S. Water stress and cooling costs are projected to rise, with aggregated cooling-related operational cost impacts across high-risk facilities by 2050 due to increasing ambient temperatures and electricity needs. Under SSP1-RCP2.6, the projected physical risks are lower but still require site-level adaptation and planning. Financial & Strategic Planning Implications: Quantified scenario results and scenario outcomes informed Solenis's climate transition plan, decarbonization roadmap, and SBTi-aligned targets. And capital investments were aligned to support: - Renewable energy procurement - Electrification of manufacturing and an increase in energy efficiency projects - Increase in water recycling and water efficiency projects in Manufacturing. - Investment in R&P for efficient, low-carbon products - Implications for Other Environmental Issues The i

Water

(5.1.2.1) Business processes influenced by your analysis of the reported scenarios

Select all that apply

- ☑ Risk and opportunities identification, assessment and management
- Strategy and financial planning
- ☑ Resilience of business model and strategy
- Capacity building

(5.1.2.2) Coverage of analysis

Select from:

✓ Organization-wide

(5.1.2.3) Summarize the outcomes of the scenario analysis and any implications for other environmental issues

The acquisition of Diversey, which added 32 new operational sites, significantly elevated water stress risk exposure across South Africa, Mexico, India, Brazil, and Australia, facing compounded drought, heat, and wildfire weather. Water stress disrupts both upstream and downstream operations. Solenis's supply chain could experience raw material shortages, transportation disruptions, and higher water procurement costs. Downstream, product quality and reliability may be impacted by fluctuations in water quantity and quality, requiring more intensive treatment and increasing operational complexity. Strategic and Financial Planning Response: Priority upgrades include a focus on site-level resilience planning, water management, identifying water champions in each site, and efficient cooling systems in high-risk locations. Wider Environmental Implications: The scenario analysis also revealed potential water-related impacts on biodiversity and ecosystem services, such as: - River and coastal ecosystem degradation (e.g., from flooding, eutrophication, or infrastructure damage). - Potential bacterial blooms linked to warming water temperatures.

(5.2) Does your organization's strategy include a climate transition plan?

(5.2.1) Transition plan

Select from:

[Fixed row]

☑ No, but we are developing a climate transition plan within the next two years

(5.2.15) Primary reason for not having a climate transition plan that aligns with a 1.5°C world

Select from:

☑ Other, please specify :Solenis completed the significant acquisition of the Diversey business in 2023 and has been focusing on the integration. This integration has included recalculating the

(5.2.16) Explain why your organization does not have a climate transition plan that aligns with a 1.5°C world

Solenis is actively developing a climate transition plan aligned with the TPT Disclosure Framework. In 2024, we completed the foundational building blocks of our transition planning process, which included: A TPT-aligned gap analysis, Identification and prioritization of decarbonization levers, and implementation roadmap structured around short-, medium-, and long-term actions. This internal work has informed our upcoming Science-Based Target (SBTi) submission by September 2025 and will form the basis of our externally validated transition strategy. While the full plan is not yet published, the foundational elements are complete, and we plan to finalize and disclose the full transition plan following validation of our SBTi targets.

[Fixed row]

(5.3) Have environmental risks and opportunities affected your strategy and/or financial planning?

(5.3.1) Environmental risks and/or opportunities have affected your strategy and/or financial planning

Select from:

✓ Yes, strategy only

(5.3.2) Business areas where environmental risks and/or opportunities have affected your strategy

Select all that apply

- Products and services
- ✓ Investment in R&D
- Operations

(5.3.3) Primary reason why environmental risks and/or opportunities have not affected your strategy and/or financial planning

Select from:

☑ Other, please specify :Acquisition of large business

(5.3.4) Explain why environmental risks and/or opportunities have not affected your strategy and/or financial planning

Solenis completed the significant acquisition of the Diversey business in 2023. At the same time Solenis also committed to setting Science Based targets through the Science Based Targets Initiative. The focus in 2023 has been on integrating the two business and consolidating the environmental performance data. This data is now being used to develop the climate transition plan for the combined business.

[Fixed row]

(5.3.1) Describe where and how environmental risks and opportunities have affected your strategy.

Products and services

(5.3.1.1) Effect type

Select all that apply

✓ Risks

Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

✓ Climate change

Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

As a global leader in water services and hygiene solutions, we develop efficient, innovative, and climate-resilient products and services to solve customers' water treatment and process improvement challenges. This is core to our existing business and core to our purpose. Climate risks and opportunities have informed and aligned with Solenis' product and service strategy over short, medium, and long-term horizons. Solenis invests 1.4% of its revenue in technology and new product development. In the medium term, transition risks such as carbon pricing and customer Scope 3 target pressures are expected to shift demand toward verified sustainable inputs. Solenis is targeting that 90% of its innovation projects focus on sustainability, with 30% aimed explicitly at reducing product carbon footprints by 2030. Through a rigorous stage-gate R&D process and strategic partnerships with universities and external consortia, Solenis develops low-carbon, circular solutions that align with both customer expectations and emerging regulatory requirements. One example is the LESSEAUTM dispenser and hand wash bar, a notable innovation that uses 95% less water and features zero plastic packaging, supporting both climate goals and market trends. Another product is gPAM technology, which is more carbon- and water-efficient than incumbent solutions. This strategic focus on low-carbon innovation and operational efficiency enhances the company's ability to adapt to a changing climate while capitalizing on emerging market opportunities. In the long term, we anticipate customer markets will increasingly favor verified low-impact formulations. Solenis's net-zero commitment by 2050, along with its target to focus 90% of innovation projects on sustainability, directly influences resource allocation decisions in product R&D, packaging innovation, and customer tools for emissions/water reduction tracking.

Investment in R&D

(5.3.1.1) Effect type

Select all that apply

Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

✓ Climate change

Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Environmental opportunities associated with climate change and water scarcity have directly shaped Solenis's investment in R&D strategy across short-, medium-, and long-term horizons. These opportunities, ranging from customer demand for low-carbon products to global water stress, have accelerated innovation investments and driven Solenis to embed sustainability into every aspect of its product development lifecycle. In response to growing customer pressure to decarbonize Scope 3 emissions and reduce water usage, Solenis has committed to ensuring that 30% of all innovation programs directly reduce product carbon footprints by 2030. This advancing low-carbon, circular, and water-smart product innovations, including: LESSEAU™ touchless dispensing solid soap bar, which eliminates plastic packaging and contains 95% less water than traditional soap products. For the short-term opportunities, Solenis uses its "FastTrack" team to develop reformulations from existing raw materials to address customer needs rapidly. In the medium term, Solenis is expanding open innovation partnerships and prioritizing R&D funding across applications impacted by transition and physical climate risks—e.g., circular water chemistries, energy-saving papermaking, and finding innovative alternative biobased packing materials. Over the long term, Solenis is transitioning its business model to emphasize product lifecycle sustainability. For that, Solenis is currently developing product carbon footprint (PCF) tools using a cradle-to-gate approach to support data-informed customer collaborations on Scope 3 decarbonization. Solenis unified its Global Technology Office following the acquisitions of Diversey and Sigura to align product innovation across all divisions. How Solenis Implements Strategic R&D Decisions: Solenis typically invests ~1.40% of its total revenue annually in R&D. The Technology office oversees R&D direction, working closely with the Sustainability Team. These shifts position Solenis to grow market share in emerging regions and

Operations

(5.3.1.1) Effect type

Select all that apply

Risks

Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

✓ Climate change

✓ Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Climate risks, including water stress, extreme heat, and drought, will influence Solenis's operational strategy across short-, medium-, and long-term time horizons. These risks also present operational opportunities, particularly in enhancing resource efficiency, business continuity, and customer value delivery. Physical water

scarcity poses a material operational risk to several of Solenis's manufacturing sites. In addition to climate risk scenario analysis, Solenis conducted a comprehensive water stress assessment via the WRI Aqueduct platform. All sites in extremely high or high water stress areas have implementing active water management plans, which include conservation practices and water reuse initiatives. To address the effects of increased temperature, Extreme Heat & Wildfire Risk, all Solenis sites undergo annual Facility Risk Assessments. Only a small portion of Solenis's physical assets are flood-prone. However, mitigation plans are integrated into Facility Risk Assessments for those sites. Rising energy prices and carbon costs present long-term operational pressure, but also an opportunity to lower emissions and costs through electrification and renewables. Solenis is implementing energy efficiency measures at key sites—high-efficiency motors, heat recovery systems, and LED lighting—and is transitioning to electric forklifts. In 2024, Solenis launched its renewable energy strategy, including the development of Power Purchase Agreements (PPAs), targeting 80% renewable electricity by 2035. Solenis is also electrifying its commercial fleets, which were launched in North America and Europe in 2024, and will continue to shift to a hybrid/electric commercial fleet in other regions. And Solenis's ValueAdvantageSM program directly links operations strategy to customer sustainability goals: In 2024, we delivered \$257 million in customer value through projects focused on water, energy, and waste efficiency. Long Term: Solenis is submitting its SBTi goal and developing its decarbonization plan to be net zero by 2050, aligning it with the company's sustainability and business strategy. Solenis embeds climate risk data into enterprise risk management (ERM) and operations planning frameworks.

(5.4) In your organization's financial accounting, do you identify spending/revenue that is aligned with your organization's climate transition?

Identification of spending/revenue that is aligned with your organization's climate transition
Select from: ✓ No, but we plan to in the next two years

[Fixed row]

(5.5) Does your organization invest in research and development (R&D) of low-carbon products or services related to your sector activities?

(5.5.1) Investment in low-carbon R&D

Select from:

✓ Yes

(5.5.2) Comment

Yes – Solenis invests in the research and development of low-carbon products, services, and enabling technologies directly related to our sector activities. In FY2024, we invested approximately 1.40% of total revenue into technology and new product development, with a global R&D team of ~500 employees, including ~350 scientists operating across 13 R&D facilities and 9 applications laboratories worldwide. In 2024, 90% of innovation projects had a sustainability or circularity focus, and 22% of our innovation programs focused on reducing carbon footprints, with a goal to increase this to 30% by 2030. Our Global Technology Office oversees the strategic direction of innovation, ensuring alignment with corporate sustainability objectives and megatrends such as climate change mitigation, water scarcity, and circular economy transition. R&D is prioritized through a rigorous stage-gate process and "blueprinting" methodology, integrating customer feedback, market intelligence, and emerging regulatory trends. Our Product Carbon Footprint (PCF) methodology, verified by TÜV Rheinland and aligned with ISO 14067:2018, covers 58% of products by revenue with a goal to reach 75% by 2030. PCF data informs material selection, manufacturing process design, and life-cycle impact reduction in R&D projects, ensuring that new product launches align with customer decarbonization goals and regulatory requirements. We also actively collaborate with external partners on developing new technologies to support the industries we serve and to discover new and innovative approaches that are sustainable and efficient. In 2024, Solenis expanded its External Technology team that identifies and evaluates opportunities to develop innovative solutions from outside sources. Over 75% of inquiries to the External Technology team focus on sustainability-related technologies. Through sustained investment, cross-industry collaboration, and internal innovation programs, Solenis is delivering solutions that reduce Scope 3 emissions for customers, lower life

(5.5.3) Provide details of your organization's investments in low-carbon R&D for chemical production activities over the last three years.

Row 1

(5.5.3.1) Technology area

Select from:

✓ Product redesign

(5.5.3.2) Stage of development in the reporting year

Select from:

✓ Applied research and development

(5.5.3.3) Average % of total R&D investment over the last 3 years

19

(5.5.3.4) R&D investment figure in the reporting year (unit currency as selected in 1.2) (optional)

22.6

(5.5.3.5) Average % of total R&D investment planned over the next 5 years

23

(5.5.3.6) Explain how your R&D investment in this technology area is aligned with your climate commitments and/or climate transition plan

We continually invest in R&D to develop new products and enhance our existing ones. Our vision is to unlock the potential of water and renewable resources to build a safer, healthier, more sustainable world, and our mission is to be a trusted partner by anticipating challenges and solving problems with the right people, the right experience, and the right technology. Our innovative solutions build a better world by creating value, reducing waste, and promoting healthy living. At Solenis, we focus on providing solutions and services that allow our customers to reduce their environmental "footprint"

(5.9) What is the trend in your organization's water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

(5.9.1) Water-related CAPEX (+/- % change)

53

(5.9.2) Anticipated forward trend for CAPEX (+/- % change)

5

(5.9.3) Water-related OPEX (+/- % change)

(5.9.4) Anticipated forward trend for OPEX (+/- % change)

5

(5.9.5) Please explain

In 2024, Solenis has significantly enhanced its efforts and initiatives to reduce process water withdrawal. A corporate-level team has been formed, and each manufacturing site has established a site-level team and "water champion" to develop specific plans to better manage process water. The corporate team enables the sites to coordinate and share best practices. Some of the areas being examined include cleaning optimization, enhancing the performance of cooling water towers, reducing "once through" water usage, and process changes related to boiler water. In addition, Solenis is looking at ways to use its own technologies in recently acquired manufacturing plants. The anticipated forward trend is based on the company's goal to reduce water intensity by 10% by 2035 versus a 2023 baseline. [Fixed row]

(5.10) Does your organization use an internal price on environmental externalities?

(5.10.1) Use of internal pricing of environmental externalities

Select from:

✓ No, but we plan to in the next two years

(5.10.3) Primary reason for not pricing environmental externalities

Select from:

✓ No standardized procedure

(5.10.4) Explain why your organization does not price environmental externalities

Solenis recognizes the benefits of having an internal water and carbon pricing mechanism and is currently carrying out a study to determine the most appropriate carbon pricing mechanism to use.

[Fixed row]

(5.11) Do you engage with your value chain on environmental issues?

Suppliers

(5.11.1) Engaging with this stakeholder on environmental issues

Select from:

Yes

(5.11.2) Environmental issues covered

Select all that apply

- ✓ Climate change
- Forests
- ✓ Water
- Plastics

Smallholders

(5.11.1) Engaging with this stakeholder on environmental issues

Select from:

✓ No, and we do not plan to within the next two years

(5.11.3) Primary reason for not engaging with this stakeholder on environmental issues

Select from:

✓ Judged to be unimportant or not relevant

(5.11.4) Explain why you do not engage with this stakeholder on environmental issues

We do not engage directly with small holders.

Customers

(5.11.1) Engaging with this stakeholder on environmental issues

Select from: ✓ Yes			
(5.11.2) Environmental issues covered			
Select all that apply ✓ Climate change ✓ Forests ✓ Water ✓ Plastics			
Investors and shareholders			
(5.11.1) Engaging with this stakeholder on environmental issues			
Select from: ✓ Yes			
(5.11.2) Environmental issues covered			
Select all that apply ☑ Climate change ☑ Forests ☑ Water ☑ Plastics			
Other value chain stakeholders			

(5.11.1) Engaging with this stakeholder on environmental issues

Select from:

Yes

(5.11.2) Environmental issues covered

Select all that apply

✓ Water

[Fixed row]

(5.11.1) Does your organization assess and classify suppliers according to their dependencies and/or impacts on the environment?

	Assessment of supplier dependencies and/or impacts on the environment
Climate change	Select from: ✓ No, we do not currently assess the dependencies and/or impacts of our suppliers, but we plan to do so within the next two years
Forests	Select from: ✓ No, we do not currently assess the dependencies and/or impacts of our suppliers, but we plan to do so within the next two years
Water	Select from: ☑ No, we do not currently assess the dependencies and/or impacts of our suppliers, but we plan to do so within the next two years
Plastics [Fixed row]	Select from: ☑ No, we do not currently assess the dependencies and/or impacts of our suppliers, but we plan to do so within the next two years

[Fixed row]

(5.11.2) Does your organization prioritize which suppliers to engage with on environmental issues?

Climate change

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

✓ Yes, we prioritize which suppliers to engage with on this environmental issue

(5.11.2.2) Criteria informing which suppliers are prioritized for engagement on this environmental issue

Select all that apply

- ✓ Business risk mitigation
- ✓ Leverage over suppliers
- ✓ Product lifecycle

(5.11.2.4) Please explain

In alignment with Solenis sustainable sourcing strategy, we engage suppliers using criteria such as lower product carbon footprint and ISCC-certified raw materials, where applicable. These engagement practices are also intended to support Solenis in meeting its SBTi targets.

Forests

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

✓ Yes, we prioritize which suppliers to engage with on this environmental issue

(5.11.2.2) Criteria informing which suppliers are prioritized for engagement on this environmental issue

Select all that apply

- ✓ Business risk mitigation
- ✓ Material sourcing
- ✓ Product safety and compliance
- ✓ Regulatory compliance

(5.11.2.4) Please explain

Engaging with all suppliers is important to us, with regards to Forest we launched a strategy for material sourced containing palm oil to prioritize RSPO certified products whenever feasible (Ref to Solenis Responsible Palm Oil Sourcing Policy at https://sustainability.solenis.com/globalassets/resources/sustainability-regulatory-library/responsible-palm-oil-sourcing-v2.pdf). As part of Solenis commitment to sustainability and the fight against deforestation, the company is transitioning towards more responsible sourcing practices. In line with this objective, we are actively working to ensure compliance with the EU Regulation on Deforestation-free Products (Regulation (EU) 2023/1115 – EUDR), which sets obligations for operators and traders placing or exporting deforestation-related commodities on the EU market

Water

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

☑ No, we do not prioritize which suppliers to engage with on this environmental issue

(5.11.2.3) Primary reason for no supplier prioritization on this environmental issue

Select from:

☑ We engage with all suppliers

(5.11.2.4) Please explain

Engaging with all suppliers is important to us

Plastics

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

☑ No, we do not prioritize which suppliers to engage with on this environmental issue

(5.11.2.3) Primary reason for no supplier prioritization on this environmental issue

Select from:

(5.11.2.4) Please explain

Engaging with all suppliers is important to us [Fixed row]

(5.11.5) Do your suppliers have to meet environmental requirements as part of your organization's purchasing process?

Climate change

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

✓ Yes, environmental requirements related to this environmental issue are included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

✓ Yes, we have a policy in place for addressing non-compliance

(5.11.5.3) Comment

Requirements are covered in: - Supplier Contract template - Solenis Supplier Code of Conduct (https://www.solenis.com/globalassets/resources/sustainability-regulatory-library/supplier-code-of-conduct-v8.pdf) - Solenis Sourcing Policy (https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/supplier-risk-assessment-protocol.pdf) - Supplier Risk Protocol (https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/supplier-risk-assessment-protocol.pdf) Should Solenis determine a supplier no longer subscribes to sustainability principles, Solenis will inform the supplier in writing of the decision that it is no longer an approved source for Solenis. The supplier will be provided the opportunity to correct and / or demonstrate its adherence to sustainability principles and retain its approved supplier status. In addition, we are tracking supplier ESG performance within our supplier scorecard, next year it will be integrated with long term target for GHG emission Scope 3 reduction in alignment with SBTi commitment.

Forests

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

✓ Yes, environmental requirements related to this environmental issue are included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

✓ Yes, we have a policy in place for addressing non-compliance

(5.11.5.3) Comment

Requirements are covered in: - Supplier Contract template - Solenis Supplier Code of Conduct (https://www.solenis.com/globalassets/resources/sustainability-regulatory-library/supplier-code-of-conduct-v8.pdf) - Solenis Sourcing Policy (https://www.solenis.com/globalassets/resources/sustainability-regulatory-library/supplier-risk-assessment-protocol.pdf) - Supplier Risk Protocol (https://www.solenis.com/globalassets/resources/sustainability-regulatory-library/supplier-risk-assessment-protocol.pdf) Should Solenis determine a supplier no longer subscribes to sustainability principles, Solenis will inform the supplier in writing of the decision that it is no longer an approved source for Solenis. The supplier will be provided the opportunity to correct and / or demonstrate its adherence to sustainability principles and retain its approved supplier status.

Water

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

☑ Yes, environmental requirements related to this environmental issue are included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

☑ No, we do not have a policy in place for addressing non-compliance

(5.11.5.3) Comment

Requirements are covered in: - Supplier Contract template - Solenis Supplier Code of Conduct (https://www.solenis.com/globalassets/resources/sustainability-regulatory-library/supplier-code-of-conduct-v8.pdf) - Solenis Sourcing Policy (https://www.solenis.com/globalassets/resources/sustainability-regulatory-library/supplier Risk Protocol (https://www.solenis.com/globalassets/resources/sustainability-regulatory-library/supplier-risk-assessment-protocol.pdf) Should Solenis determine a supplier no longer subscribes to sustainability principles, Solenis will inform the supplier in writing of the decision that it is no longer an approved source for Solenis. The supplier will be provided the opportunity to correct and / or demonstrate its adherence to sustainability principles and retain its approved supplier status.

[Fixed row]

(5.11.6) Provide details of the environmental requirements that suppliers have to meet as part of your organization's purchasing process, and the compliance measures in place.

Climate change

(5.11.6.1) Environmental requirement

Select from:

☑ Environmental disclosure through a non-public platform

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

- Certification
- ☑ Supplier scorecard or rating
- **✓** Supplier self-assessment

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

☑ 26-50%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

✓ 26-50%

(5.11.6.7) % tier 1 supplier-related scope 3 emissions attributable to the suppliers required to comply with this environmental requirement

Select from:

☑ 26-50%

(5.11.6.8) % tier 1 supplier-related scope 3 emissions attributable to the suppliers in compliance with this environmental requirement

Select from:

☑ 26-50%

(5.11.6.9) Response to supplier non-compliance with this environmental requirement

Select from:

☑ Retain and engage

(5.11.6.10) % of non-compliant suppliers engaged

Select from:

☑ 1-25%

(5.11.6.11) Procedures to engage non-compliant suppliers

Select all that apply

- ☑ Providing information on appropriate actions that can be taken to address non-compliance
- ☑ Re-integrating suppliers back into upstream value chain based on the successful and verifiable completion of activities

(5.11.6.12) Comment

Requirements are covered in: - Supplier Contract template - Solenis Supplier Code of Conduct (https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/supplier-code-of-conduct-v8.pdf) - Solenis Sourcing Policy (https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/sourcing.pdf) - Supplier Risk Protocol (https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/supplier-risk-assessment-protocol.pdf) We monitor suppliers environmental performance through Coupa (our new supplier management program) and GRMS (Global Risk Management System). Should

Solenis determine a supplier no longer subscribes to sustainability principles, Solenis will inform the supplier in writing of the decision that it is no longer an approved source for Solenis. The supplier will be provided the opportunity to correct and / or demonstrate its adherence to sustainability principles and retain its approved supplier status.

Forests

(5.11.6.1) Environmental requirement

Select from:

☑ Environmental disclosure through a non-public platform

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

- Certification
- ☑ Supplier scorecard or rating
- **✓** Supplier self-assessment

(5.11.6.3)~% tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

☑ 26-50%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

☑ 26-50%

(5.11.6.9) Response to supplier non-compliance with this environmental requirement

Select from:

Retain and engage

(5.11.6.10) % of non-compliant suppliers engaged

Select from:

✓ 1-25%

(5.11.6.11) Procedures to engage non-compliant suppliers

Select all that apply

- ✓ Providing information on appropriate actions that can be taken to address non-compliance
- ☑ Re-integrating suppliers back into upstream value chain based on the successful and verifiable completion of activities

(5.11.6.12) Comment

Requirements are covered in: - Supplier Contract template - Solenis Supplier Code of Conduct (https://www.solenis.com/globalassets/resources/sustainability-regulatory-library/supplier-code-of-conduct-v8.pdf) - Solenis Sourcing Policy (https://www.solenis.com/globalassets/resources/sustainability-regulatory-library/sourcing.pdf) - Supplier Risk Protocol (https://www.solenis.com/globalassets/resources/sustainability-regulatory-library/supplier-risk-assessment-protocol.pdf) We monitor suppliers environmental performance through Coupa (our new supplier management program) and GRMS (Global Risk Management System). Should Solenis determine a supplier no longer subscribes to sustainability principles, Solenis will inform the supplier in writing of the decision that it is no longer an approved source for Solenis. The supplier will be provided the opportunity to correct and / or demonstrate its adherence to sustainability principles and retain its approved supplier status.

Water

(5.11.6.1) Environmental requirement

Select from:

☑ Environmental disclosure through a non-public platform

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

✓ No mechanism for monitoring compliance

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

✓ 26-50%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

✓ 26-50%

(5.11.6.9) Response to supplier non-compliance with this environmental requirement

Select from:

✓ No response

(5.11.6.12) Comment

Requirements are covered in: - Supplier Contract template - Solenis Supplier Code of Conduct (https://www.solenis.com/globalassets/resources/sustainability-regulatory-library/supplier-code-of-conduct-v8.pdf) - Solenis Sourcing Policy (https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/sourcing.pdf) - Supplier Risk Protocol (https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/supplier-risk-assessment-protocol.pdf) For Water Solenis provides supplier guidance through requirements, currently we are not yet monitoring quantity data [Add row]

(5.11.7) Provide further details of your organization's supplier engagement on environmental issues.

Climate change

(5.11.7.2) Action driven by supplier engagement

Select from:

✓ Adaptation to climate change

(5.11.7.3) Type and details of engagement

Information collection

☑ Collect environmental risk and opportunity information at least annually from suppliers

Innovation and collaboration

☑ Collaborate with suppliers on innovations to reduce environmental impacts in products and services

(5.11.7.4) Upstream value chain coverage

Select all that apply

☑ Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

☑ 26-50%

(5.11.7.6) % of tier 1 supplier-related scope 3 emissions covered by engagement

Select from:

✓ 26-50%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

In alignment with Solenis sustainable sourcing strategy, we engage suppliers using criteria such as lower product carbon footprint and ISCC-certified raw materials, where applicable. These engagement practices are also intended to support Solenis in meeting its SBTi targets.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

☑ Yes, please specify the environmental requirement :decrease CO2 emission (e.g. logistic suppliers for warehouses and trasport)

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

✓ Unknown

Forests

(5.11.7.1) Commodity

Select from:

Palm oil

(5.11.7.2) Action driven by supplier engagement

Select from:

✓ No deforestation and/or conversion of other natural ecosystems

(5.11.7.3) Type and details of engagement

Information collection

✓ Collect environmental risk and opportunity information at least annually from suppliers

Innovation and collaboration

☑ Engage with suppliers to advocate for policy or regulatory change to address environmental challenges

(5.11.7.4) Upstream value chain coverage

Select all that apply

☑ Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

☑ 26-50%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

With regards to Forest we launched a strategy for material sourced containing palm oil to prioritize RSPO certified products whenever feasible (Responsible Palm Oil Sourcing) (Ref to Solenis Responsible Palm Oil Sourcing Policy at https://sustainability.solenis.com/globalassets/resources/sustainability-regulatory-library/responsible-palm-oil-sourcing-v2.pdf). As part of Solenis commitment to sustainability and the fight against deforestation, the company is transitioning towards more responsible sourcing practices.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

✓ Yes, please specify the environmental requirement :as example, Supply chain engagement for RSPO compliance

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

Yes

Water

(5.11.7.2) Action driven by supplier engagement

Select from:

✓ No other supplier engagement

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

✓ No, this engagement is unrelated to meeting an environmental requirement

Plastics

(5.11.7.2) Action driven by supplier engagement

Select from:

✓ No other supplier engagement [Add row]

(5.11.9) Provide details of any environmental engagement activity with other stakeholders in the value chain.

Climate change

(5.11.9.1) Type of stakeholder

Select from:

Customers

(5.11.9.2) Type and details of engagement

Education/Information sharing

☑ Share information on environmental initiatives, progress and achievements

Innovation and collaboration

☑ Collaborate with stakeholders on innovations to reduce environmental impacts in products and services

(5.11.9.3) % of stakeholder type engaged

Select from:

✓ 76-99%

(5.11.9.4) % stakeholder-associated scope 3 emissions

Select from:

Unknown

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

We collaborate with our customers to optimize energy and water usage by developing tailored technologies that help them achieve their sustainability goals. The ValueAdvantage Partner Program is Solenis' value delivery initiative, designed to quantify and communicate the impact of our solutions. As part of the program, we use a sustainability calculator to document measurable improvements in areas such as CO₂e emissions, energy consumption, waste generation, and water usage at customer sites. Our focus is on providing solutions and services that allow our customers to reduce their carbon footprint and achieve their sustainability goals. Nearly every new product introduction delivers sustainability benefits that fall broadly into one or more of these categories: Water & resource efficiency, Sustainable chemistry & compliance, Circularity & waste reduction, and Energy efficiency & greenhouse gas reduction. More details of out ValueAdvantage program can be found in our sustainability report.

(5.11.9.6) Effect of engagement and measures of success

We estimate that 73% of our revenue supported customers sustainability goals in 2024 Solenis has a target that by 2030, 90% of revenue will come from supporting customers sustainability goals. Some our customer success stories where Solenis helped to reduce water, Co2e, and waste can be seen in page 77 of the sustainability report.

Forests

(5.11.9.1) Type of stakeholder

Select from:

Customers

(5.11.9.2) Type and details of engagement

Education/Information sharing

☑ Share information about your products and relevant certification schemes

(5.11.9.3) % of stakeholder type engaged

Select from:

Unknown

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

Solenis shares information on it products with its customers. In FY 2024 we launched a global initiative for RSPO raw materials aligned with our strategy to offer our Customer sustainable products

(5.11.9.6) Effect of engagement and measures of success

Solenis has initiated a global project to strengthen responsible sourcing practices for raw materials linked to deforestation risks, such as palm oil. In FY2024 we began mapping our supply chain to establish a clear baseline and define measurable targets. While at an early stage of maturity, this initiative is aligned with our long-term strategy to transition to deforestation-free sourcing. To support this, we are adopting RSPO-certified materials and using third-party certification to ensure traceability back to origin. This provides assurance that the raw materials used in our products are sourced responsibly and transparently. By sharing certification details with customers, Solenis enables them to have greater confidence in the sustainability of the materials we supply. As the program progresses, we plan to

expand traceability coverage and report more granular results in future disclosures, with the aim of demonstrating measurable progress year-over-year in reducing deforestation risk within our value chain.

Water

(5.11.9.1) Type of stakeholder

Select from:

Customers

(5.11.9.2) Type and details of engagement

Innovation and collaboration

✓ Run a campaign to encourage innovation to reduce environmental impacts

(5.11.9.3) % of stakeholder type engaged

Select from:

☑ 76-99%

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

We collaborate with our customers to optimize energy and water usage by developing tailored technologies that help them achieve their sustainability goals. The ValueAdvantage Partner Program is Solenis' value delivery initiative, designed to quantify and communicate the impact of our solutions. As part of the program, we use a sustainability calculator to document measurable improvements in areas such as CO₂e emissions, energy consumption, waste generation, and water usage at customer sites. Our focus is on providing solutions and services that allow our customers to reduce their carbon footprint and achieve their sustainability goals. Nearly every new product introduction delivers sustainability benefits that fall broadly into one or more of these categories: Water & resource efficiency, Sustainable chemistry & compliance, Circularity & waste reduction, and Energy efficiency & greenhouse gas reduction. More details of out ValueAdvantage program can be found in our sustainability report.

(5.11.9.6) Effect of engagement and measures of success

We estimate that 73% of our revenue supported customers sustainability goals in 2024 Solenis has a target that by 2030, 90% of revenue will come from supporting customers sustainability goals. Some our customer success stories where Solenis helped to reduce water, Co2e, and waste can be seen in page 77 of sustainability report.

(5.13) Has your organization already implemented any mutually beneficial environmental initiatives due to CDP Supply Chain member engagement?

(5.13.1) Environmental initiatives implemented due to CDP Supply Chain member engagement

Select from:

✓ No, and we do not plan to within the next two years

(5.13.2) Primary reason for not implementing environmental initiatives

Select from:

✓ Not an immediate strategic priority

(5.13.3) Explain why your organization has not implemented any environmental initiatives

Our organization has not implemented any mutually beneficial environmental initiatives as a result of CDP Supply Chain member engagement, as this is not currently a strategic priority
[Fixed row]

C6. Environmental Performance - Consolidation Approach

(6.1) Provide details on your chosen consolidation approach for the calculation of environmental performance data.

	Consolidation approach used	Provide the rationale for the choice of consolidation approach
Climate change	Select from: ✓ Operational control	Operational control fits well with the company structure with activities under operational control clearly identifiable.
Forests	Select from: ☑ Operational control	Operational control fits well with the company structure with activities under operational control clearly identifiable.
Water	Select from: ☑ Operational control	Operational control fits well with the company structure with activities under operational control clearly identifiable.
Plastics	Select from: ☑ Operational control	Operational control fits well with the company structure with activities under operational control clearly identifiable.
Biodiversity	Select from: ✓ Operational control	Operational control fits well with the company structure with activities under operational control clearly identifiable.

[Fixed row]

C7. Environmental performance - Cl	imate Change
(7.1) Is this your first year of reporting	g emissions data to CDP?
Select from: ✓ No	
(7.1.1) Has your organization underg changes being accounted for in this of	one any structural changes in the reporting year, or are any previous structural disclosure of emissions data?
	Has there been a structural change?
	Select all that apply ☑ No
[Fixed row] (7.1.2) Has your emissions accounting year?	ng methodology, boundary, and/or reporting year definition changed in the reporting
	Change(s) in methodology, boundary, and/or reporting year definition?
	Select all that apply ✓ No

(7.2) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.

Select all that apply

- ☑ The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard (Revised Edition)
- ☑ The Greenhouse Gas Protocol: Scope 2 Guidance
- ☑ The Greenhouse Gas Protocol: Corporate Value Chain (Scope 3) Standard
- (7.3) Describe your organization's approach to reporting Scope 2 emissions.

(7.3.1) Scope 2, location-based

Select from:

☑ We are reporting a Scope 2, location-based figure

(7.3.2) Scope 2, market-based

Select from:

☑ We are reporting a Scope 2, market-based figure

(7.3.3) Comment

We publish both market and location based Scope 2 in our Sustainability Report - https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/105522-lit-2024sustainabilityreport-en-wb-v2.pdf [Fixed row]

(7.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1, Scope 2 or Scope 3 emissions that are within your selected reporting boundary which are not included in your disclosure?

Select from:

V No

(7.5) Provide your base year and base year emissions.

Scope 1

(7.5.1) Base year end

09/30/2018

(7.5.2) Base year emissions (metric tons CO2e)

169914

(7.5.3) Methodological details

Activity data is collected from the manufacturing sites on the quantity and types of fuel used along with fuel data for vehicle use. The activity data is combined with emission factors from the US EPA Emissions Factors Hub for non-UK sites and from UK DEFRA for UK sites. For non-manufacturing properties, where energy data is not available, estimates are made using intensity factors published from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS)

Scope 2 (location-based)

(7.5.1) Base year end

09/30/2018

(7.5.2) Base year emissions (metric tons CO2e)

131595.0

(7.5.3) Methodological details

Activity data is collected from the manufacturing sites on the electricity, heat, steam and compressed air supplied by third parties. The activity data is combined with country specific emission factors. For non-manufacturing properties, where energy data is not available, estimates are made using intensity factors published from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS)

Scope 2 (market-based)

(7.5.1) Base year end

09/30/2018

(7.5.2) Base year emissions (metric tons CO2e)

135929.0

(7.5.3) Methodological details

Activity data is collected from the manufacturing sites on the electricity, heat, steam and compressed air supplied by third parties. The activity data is combined with country specific residual emission factors where renewable contracts are not in place. For countries where residual emission factors are not available then the location-based emissions factors are used. For non-manufacturing properties, where energy data is not available, estimates are made using intensity factors published from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS)

Scope 3 category 1: Purchased goods and services

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

2406964

(7.5.3) Methodological details

Where secondary emission factors are available, from sources such as Ecoinvent, these are multiplied by the respective global chemical volume purchased in the financial year. This accounts for 85% of the calculated emissions. The remaining 15% of the emissions are calculated on a spend basis using emission factors from US EPA Supply Chain GHG Emission Factors for US Commodities and Industries. Spending for items such as travel, waste, utilities, and logistics has been excluded from this category to avoid double counting with other Scope 3 categories. The spend data is extracted from our SAP system monthly. This means that some transaction reversals may not be included in the spend file resulting in a small overstatement of emissions

Scope 3 category 2: Capital goods

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

30521.0

(7.5.3) Methodological details

The capital spend in the financial year is mapped to the commodity types in the US EPA Supply Chain GHG Emission Factors for US Commodities and Industries. The spend for each category is then multiplied by the respective emission factor.

Scope 3 category 3: Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

67647.0

(7.5.3) Methodological details

Activity data from our total energy use is multiplied by country specific emission factors published by UK DEFRA, AIB and US EPA eGrid.

Scope 3 category 4: Upstream transportation and distribution

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

675.0

(7.5.3) Methodological details

The methodology for this category is the same as category 9. Logistics data is filtered for upstream shipments using the incoterms for the shipment. Where information on the shipment load, distance and mode is available from the transport providers then the emissions are calculated using this activity data and emission factors from the US EPA Emissions Factors Hub. 10% of emissions in this category are calculated using this method. Where the start and end point of the delivery is known, the geodesic distance between the points is calculated and adjusted to reflect actual transport distance by applying a non-linear adjustment factor of 1.2. This distance is combined with the shipment weight and emission factors from the US EPA Emissions Factors Hub. 30% of the emissions in this category are calculated using this method. The remaining 60%, where location data was not available, are spend based using US EPA Supply Chain GHG Emission Factors for US Commodities and Industries

Scope 3 category 5: Waste generated in operations

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

12077.0

(7.5.3) Methodological details

Activity data from waste produced by each manufacturing site globally was multiplied by waste specific emission factors from US EPA Emissions Factors Hub, table 9.

Scope 3 category 6: Business travel

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

3342.0

(7.5.3) Methodological details

This category covers all travel managed through the Solenis travel and expense systems. This includes travel of non Solenis employees where Solenis have arranged and paid for the travel. For air travel, distance and cabin class data for each is provided by our business travel partner, Egencia. This data is combined with emission factors published by DEFRA to calculate the emissions. For rail travel, emissions data is provided directly by our travel partner Egencia. Egencia use a combination of DEFRA emission factors and factors provided by the rail operating companies. Emissions from hotel stays are calculated using nights and rooms stayed data our internal travel expenses system. This is combined with country specific emission factors from DEFRA. Where data gaps exist in emission factors for a specific country, emission factors from hotelfootprints.org are used. For taxi journeys emissions are calculated using spend data from the travel expenses system. Average taxi fare information is used to calculate the distance travelled for each transaction and then combined with emission factors for passenger cars from US EPA Emissions Factors Hub, table 10. Business journeys made by our employees using their personal vehicles, with the fuel use claimed back through the expense system, are additionally calculated. Data from the internal expense system is used together with average fuel cost data to calculate the amount of fuel used by journey. Emission factors for US EPA Emissions Factors Hub are used to calculate the fuel emissions. For this calculation, it is assumed that all personal vehicles are solely fueled by gasoline. Emissions from our fleet of leased vehicles are not included in Scope 3 Category 6 but are fully allocated in our Scope 1 calculation.

Scope 3 category 7: Employee commuting

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

7375.0

(7.5.3) Methodological details

The employee commuting behavior of the Solenis facility-based workforce totaling 4701 employees is covered in this category. Non-facility-based employees, totaling 2087, are considered as working remotely and are excluded from the calculation. Employee commuting emissions are calculated using the distance from the employee home zip code to their facility location. Based on company policies the assumption is made that manufacturing site workers commute 4 times per week, and all other employees commute 3 times per week. An average number of working weeks of 46 per year is used in the calculation. Transport mode is calculated using statistical data for each region. The data on transport mode and distance is combined with emission factors from US EPA Emissions Factors Hub, table 10.

Scope 3 category 8: Upstream leased assets

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

(7.5.3) Methodological details

Floor area and building type data for all our leased assets is reviewed and combined with intensity data from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS). The resulting energy use is used to calculate emissions using emissions factors from U.S. EPA eGRID for electricity and US EPA Emissions Factors Hub, table 1, for natural gas

Scope 3 category 9: Downstream transportation and distribution

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

244822.0

(7.5.3) Methodological details

The methodology for this category is the same as category 4. Logistics data is filtered for downstream shipments using the incoterms for the shipment. Where information on the shipment load, distance and mode are available from the transport providers then the emissions are calculated using this activity data and emission factors from the US EPA Emissions Factors Hub. 18% of emissions in this category are calculated using this method. Where the start and end point of the delivery is known, the geodesic distance between the points is calculated and adjusted to reflect actual transport distance by applying a non-linear adjustment factor of 1.2. This distance is combined with the shipment weight and emission factors from the US EPA Emissions Factors Hub. 4% of the emissions in this category are calculated using this method. The remaining 78%, where location data was not available, are spend based using US EPA Supply Chain GHG Emission Factors for US Commodities and Industries.

Scope 3 category 10: Processing of sold products

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

421.0

(7.5.3) Methodological details

Most chemical products sold by us are processing aids improving our customers' processes, reducing energy consumption and processing. Very few of our products require additional energy by the customer. For these products an estimate has been made of the additional energy used when the product is applied at the customer site. This combined with sales volume data and electricity emission factors from U.S. EPA eGRID is used to calculate the emissions.

Scope 3 category 11: Use of sold products

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

20.0

(7.5.3) Methodological details

Very few of our products create direct use phase emissions. The exception is the dosing and monitoring equipment we supply. For these products the number of units sold is combined with average electricity consumption data and emissions factors from U.S. EPA eGRID. An average product life of 5 years is used for this calculation.

Scope 3 category 12: End of life treatment of sold products

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

3594.0

(7.5.3) Methodological details

As our products are chemicals that are consumed at the customer, our end-of-life emissions only relate to the single use packaging our products are supplied in. Data on the amount and type of packaging material supplied is combined with emissions factors from US EPA Emission Factors Hub, table 9.

Scope 3 category 13: Downstream leased assets

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Solenis didn't lease any of its assets to other entities in financial year 2022.

Scope 3 category 14: Franchises

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

Solenis didn't operate any franchise in financial year 2022.

Scope 3 category 15: Investments

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

(7.5.3) Methodological details

Our revenue from the joint venture was combined with emission factors from US EPA Supply Chain GHG Emission Factors for US Commodities and Industries to calculate the emissions.

Scope 3: Other (upstream)

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

0.0

(7.5.3) Methodological details

No other upstream emissions

Scope 3: Other (downstream)

(7.5.1) Base year end

09/30/2022

(7.5.2) Base year emissions (metric tons CO2e)

0

(7.5.3) Methodological details

No other downstream emissions [Fixed row]

(7.6) What were your organization's gross global Scope 1 emissions in metric tons CO2e?

Reporting year

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

212712

(7.6.3) Methodological details

Solenis calculates Scope 1 GHG emissions from the combustion of fossil fuels (e.g., natural gas, diesel, gasoline, LPG), refrigerant losses, and vehicle use across operations. Activity data is collected from all manufacturing sites and estimated for non-manufacturing facilities based on floor area and building type using intensity data from the U.S. Energy Information Administration (EIA) – Commercial Buildings Energy Consumption Survey (CBECS). Emissions from site fuel use are calculated using emission factors from the UK DEFRA 2024 database. Emissions from company-leased vehicles are calculated regionally: in North America, Asia Pacific, and Latin America, emissions are based on EPA Emission Factors Hub 2024; in Europe, DEFRA 2024 factors are used. Where fuel consumption or distance data is missing, estimates are made using average fleet metrics or scaled based on vehicle counts. Refrigerant emissions are calculated from reported top-up volumes using the global warming potential of each refrigerant type. Biogenic emissions from biofuels are calculated using emission factors from Sphera Managed LCA Content 2024.2. This approach aligns with the GHG Protocol and ensures comprehensive reporting across Solenis operations. The full ""Basis of Reporting"" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability--regulatory-library/2024-basis-of-reporting.pdf"

Past year 1

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

213974

(7.6.2) End date

09/30/2023

(7.6.3) Methodological details

Activity data is collected from the manufacturing sites on the quantity and types of fuel used along with fuel data for vehicle use. The activity data is combined with emission factors from the US EPA Emissions Factors Hub for non-UK sites and from UK DEFRA for UK sites. For non-manufacturing properties, where energy data is not available, estimates are made using intensity factors published from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS) The value reported here includes the emissions for the Diversey business

Past year 2

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

168271

(7.6.2) End date

09/30/2022

(7.6.3) Methodological details

Activity data is collected from the manufacturing sites on the quantity and types of fuel used along with fuel data for vehicle use. The activity data is combined with emission factors from the US EPA Emissions Factors Hub for non-UK sites and from UK DEFRA for UK sites. For non-manufacturing properties, where energy data is not available, estimates are made using intensity factors published from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS)

Past year 3

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

160821

(7.6.2) End date

09/30/2021

(7.6.3) Methodological details

Activity data is collected from the manufacturing sites on the quantity and types of fuel used along with fuel data for vehicle use. The activity data is combined with emission factors from the US EPA Emissions Factors Hub for non-UK sites and from UK DEFRA for UK sites. For non-manufacturing properties, where energy data is not available, estimates are made using intensity factors published from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS)

Past year 4

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

160584

(7.6.2) End date

09/30/2020

(7.6.3) Methodological details

Activity data is collected from the manufacturing sites on the quantity and types of fuel used along with fuel data for vehicle use. The activity data is combined with emission factors from the US EPA Emissions Factors Hub for non-UK sites and from UK DEFRA for UK sites. For non-manufacturing properties, where energy data is not available, estimates are made using intensity factors published from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS)

Past year 5

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

159655

(7.6.2) End date

09/30/2019

(7.6.3) Methodological details

Activity data is collected from the manufacturing sites on the quantity and types of fuel used along with fuel data for vehicle use. The activity data is combined with emission factors from the US EPA Emissions Factors Hub for non-UK sites and from UK DEFRA for UK sites. For non-manufacturing properties, where energy data is not available, estimates are made using intensity factors published from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS)

[Fixed row]

(7.7) What were your organization's gross global Scope 2 emissions in metric tons CO2e?

Reporting year

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

162573

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

175456

(7.7.4) Methodological details

Solenis calculates Scope 2 GHG emissions using both the location-based and market-based methods, following GHG Protocol guidance. Activity data is collected from manufacturing sites for electricity, steam, heat, and compressed air supplied by third parties. Where direct energy data is unavailable for non-manufacturing sites, Solenis estimates usage based on building floor area and type, using energy intensity values from the U.S. Energy Information Administration's Commercial Buildings Energy Consumption Survey (CBECS). For market-based emissions, country specific residual mix emission factors are applied when available. Where renewable electricity contracts exist, supplier-specific emission factors or certificates are used. For location-based emissions, country-specific generation emission factors are used. In cases where residual mix factors are not available, location-based factors are used as a proxy. All emissions are calculated using factors from the Sphera Managed LCA Content 2024.2 database. This ensures comprehensive and consistent reporting of Scope 2 emissions across all Solenis operations. The full "Basis of Reporting" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability--regulatory-library/2024-basis-of-reporting.pdf

Past year 1

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

158882

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

165708

(7.7.3) End date

09/30/2023

(7.7.4) Methodological details

Activity data is collected from the manufacturing sites on the electricity, heat, steam and compressed air supplied by third parties. For market based emissions the activity data is combined with country specific residual emission factors where renewable contracts are not in place. For location based emissions activity data is combined with country specific generation emission factors. For countries where residual emission factors are not available then the location based emissions factors are used. For location based emissions activity data is combined with country specific emission factors. For non-manufacturing properties, where energy data is not available, estimates are made using intensity factors published from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS). The value reported here includes the emissions for the Diversey business

Past year 2

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

116335

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

122980

(7.7.3) End date

09/30/2022

(7.7.4) Methodological details

Activity data is collected from the manufacturing sites on the electricity, heat, steam and compressed air supplied by third parties. For market based emissions the activity data is combined with country specific residual emission factors where renewable contracts are not in place. For location based emissions activity data is combined with country specific generation emission factors. For countries where residual emission factors are not available then the location based emissions factors are used. For location based emissions activity data is combined with country specific emission factors. For non-manufacturing properties, where energy data is not available, estimates are made using intensity factors published from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS).

Past year 3

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

118919

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

(7.7.3) End date

09/30/2021

(7.7.4) Methodological details

Activity data is collected from the manufacturing sites on the electricity, heat, steam and compressed air supplied by third parties. For market based emissions the activity data is combined with country specific residual emission factors where renewable contracts are not in place. For location based emissions activity data is combined with country specific generation emission factors. For countries where residual emission factors are not available then the location based emissions factors are used. For location based emissions activity data is combined with country specific emission factors. For non-manufacturing properties, where energy data is not available, estimates are made using intensity factors published from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS).

Past year 4

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

116167

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

125092

(7.7.3) End date

09/30/2020

(7.7.4) Methodological details

Activity data is collected from the manufacturing sites on the electricity, heat, steam and compressed air supplied by third parties. For market based emissions the activity data is combined with country specific residual emission factors where renewable contracts are not in place. For location based emissions activity data is combined with country specific generation emission factors. For countries where residual emission factors are not available then the location based emissions factors are used. For location based emissions activity data is combined with country specific emission factors. For non-manufacturing properties, where energy data is not available, estimates are made using intensity factors published from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS).

Past year 5

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

134380

(7.7.2) Gross global Scope 2, market-based emissions (metric tons CO2e)

140923

(7.7.3) End date

09/30/2019

(7.7.4) Methodological details

Activity data is collected from the manufacturing sites on the electricity, heat, steam and compressed air supplied by third parties. For market based emissions the activity data is combined with country specific residual emission factors where renewable contracts are not in place. For location based emissions activity data is combined with country specific generation emission factors. For countries where residual emission factors are not available then the location based emissions factors are used. For location based emissions activity data is combined with country specific emission factors. For non-manufacturing properties, where energy data is not available, estimates are made using intensity factors published from the U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey (CBECS).

[Fixed row]

(7.8) Account for your organization's gross global Scope 3 emissions, disclosing and explaining any exclusions.

Purchased goods and services

(7.8.1) Evaluation status

Select from:

☑ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

(7.8.3) Emissions calculation methodology

Select all that apply

☑ Hybrid method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Data on purchased goods and services is extracted from our SAP system. For direct spend on raw materials, where the weight purchased is known, emission factors from the Sphera Managed LCA Content 2024.2. database, based on the chemical name are used to calculate the emissions. Where only spend based data is available emissions are calculated using Supply Chain GHG Emission Factors for US Commodities and Industries v1.3 by NAICS-6. Spending on travel, waste, utilities and logistics is excluded from this category to avoid double counting with other Scope 3 categories. The spend data is extracted from our SAP system monthly. This means that some transaction reversals may not be included in the spend file resulting in a small overstatement of emissions. The full ""Basis of Reporting"" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability--regulatory-library/2024-basis-of-reporting.pdf

Capital goods

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

44980

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

The capital spend in the financial year is mapped to the commodity types in the Supply Chain GHG Emission Factors for US Commodities and Industries v1.3 by NAICS-6. The spend for each category is then multiplied by the respective emission factor which is adjusted for inflation. The full "Basis of Reporting" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability--regulatory-library/2024-basis-of-reporting.pdf

Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

63853

(7.8.3) Emissions calculation methodology

Select all that apply

Average data method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Activity data from our total energy use is multiplied by country specific emission from Sphera Managed LCA Content 2024.2. The full "Basis of Reporting" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability--regulatory-library/2024-basis-of-reporting.pdf

Upstream transportation and distribution

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

426171

(7.8.3) Emissions calculation methodology

Select all that apply

Hybrid method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

16

(7.8.5) Please explain

The methodology for this category follows that of Category 9. Logistics data is filtered for upstream shipments using Incoterms, and emissions are estimated using data from multiple logistics service providers, with data quality varying by provider and region. Where available, emissions are calculated using activity data such as shipment distance, weight, and transport mode; otherwise, estimates are based on spend. Overall, 60% of emissions in this category are calculated using activity data and 40% using spend-based methods. Specifically, 12% of emissions are provided directly by logistics providers using the Global Logistics Emissions Council (GLEC) Framework, 7% are calculated based on shipment load, distance, and mode using U.S. EPA Emission Factors Hub 2024, and 41% are calculated using geodesic distance (adjusted by a factor of 1.3) combined with shipment weight and EPA emission factors. The remaining 40% of emissions, where activity data was not available, are estimated using spend data and Supply Chain GHG Emission Factors for U.S. Commodities and Industries v1.3 (NAICS-6). Some data gaps occurred during the integration of the legacy Diversey business; in those cases, available data was scaled to a full year. The full "Basis of Reporting" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability-regulatory-library/2024-basis-of-reporting.pdf

Waste generated in operations

(7.8.1) Evaluation status

Select from:

☑ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

21713

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Waste-type-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Activity data from waste produced by each manufacturing site globally was multiplied by waste specific emission factors from US EPA Emission factors Hub 2024, Table 9. The full "Basis of Reporting" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability--regulatory-library/2024-basis-of-reporting.pdf

Business travel

(7.8.1) Evaluation status

Select from:

☑ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

24075

(7.8.3) Emissions calculation methodology

Select all that apply

Hybrid method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Solenis calculates Category 6 business travel emissions using a combination of activity-based and spend-based methods covering all travel booked through the company's travel and expense systems, including travel arranged and paid for on behalf of non-Solenis personnel. Due to integration timing, data for the Diversey business was only available from April to September 2024; this was scaled to represent a full year. Air travel emissions are calculated using trip distance and cabin class data provided by Egencia, combined with emission factors from the UK DEFRA 2024 GHG Conversion Factors for Company Reporting. Rail travel emissions are calculated by Egencia using DEFRA 2024 factors and operator-specific data where available. Hotel stay emissions are based on room nights from internal systems and country-specific DEFRA 2024 factors, with hotelfootprints.org factors used where DEFRA data is unavailable. Taxi emissions are estimated using spend data and emission factors from the Supply Chain GHG Emission Factors for US Commodities and Industries v1.3 (NAICS-6). Emissions from personal vehicles used for business travel are estimated using internal expense data, fuel cost assumptions, and EPA Emission Factors Hub 2024, assuming gasoline-only vehicles. Leased vehicle emissions are excluded from this category and instead accounted for in Scope 1. The full "Basis of Reporting" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability--regulatory-library/2024-basis-of-reporting.pdf

Employee commuting

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

12741

(7.8.3) Emissions calculation methodology

Select all that apply

Average data method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

(7.8.5) Please explain

The employee commuting behavior of the Solenis facility-based workforce totaling 10,404 employees The employee commuting behavior of the Solenis facility-based workforce totaling 10,404 employees is covered in this category. Non-facility-based employees are considered as working remotely and are excluded from the calculation. Employee commuting emissions are calculated using the distance from the employee home zip code to their facility location. Based on company policies the assumption is made that manufacturing site workers commute 4 times per week and all other employees commute 3 times per week. An average number of working weeks of 46 per year is used in the calculation. Transport mode is calculated using statistical data for each region. The data on transport mode and distance is combined with emission factors from US EPA Emission factors Hub 2024, table 10. The full ""Basis of Reporting" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability--regulatory-library/2024-basis-of-reporting.pdf"

Upstream leased assets

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

All the leased assets are considered as an operating lease under Solenis operating control. The emissions from these assets are included in Scope 1 and inventory in accordance with the Greenhouse Gas Protocol, Corporate Value Chain (Scope 3) Accounting and Reporting Standard, Appendix A. The full "Basis of Reporting" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability-regulatory-library/2024-basis-of-reporting.pdf

Downstream transportation and distribution

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

7121

(7.8.3) Emissions calculation methodology

Select all that apply

Hybrid method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

The methodology for this category is the same as category 4. Logistics data is filtered for downstream shipments using the incoterms for the shipment. The full "Basis of Reporting" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability--regulatory-library/2024-basis-of-reporting.pdf

Processing of sold products

(7.8.1) Evaluation status

Select from:

☑ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

1178

(7.8.3) Emissions calculation methodology

Select all that apply

Average data method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

Most chemical products sold by us are processing aids improving our customers' processes, reducing energy consumption and processing. Very few of our products require additional energy from the customer. For these products an estimate has been made of the additional energy used when the product is applied at the

customer site. This combined with sales volume data and average US electricity emission factors from US EPA Emission factors Hub 2024 is used to calculate the emissions. The full "Basis of Reporting" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability--regulatory-library/2024-basis-of-reporting.pdf

Use of sold products

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

194512

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Methodology for direct use phase emissions, please specify: Direct use phase emissions for the Taski business and dosing and monitoring equipment are calculated. Indirect use phase emissions are not reported.

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

(7.8.5) Please explain

For the Taski floor cleaning products, data on total product sales is combined with product specific carbon footprint calculation data. A product life of 7.5 years is used for vacuum cleaners, 7 years for scrubber driers and 10 years for single disc machines. For dosing and monitoring equipment, the number of units sold is combined with average electricity consumption data and average US emissions factors from US EPA Emission factors Hub 2024. An average product life of 5 years is used for this calculation. The full "Baiss of Reporting" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability--regulatory-library/2024-basis-of-reporting.pdf

End of life treatment of sold products

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

163410

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Waste-type-specific method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

n

(7.8.5) Please explain

Solenis calculates end-of-life treatment emissions for sold products, including Taski floor cleaning machines, packaging materials, and wastewater generated from the use of our laundry and cleaning chemicals. For Taski machines, product-specific carbon footprint data is applied to total product sales to estimate end-of-life emissions. For cleaning chemicals, the quantity of water used per unit of product is determined by product family and combined with total sales volume to estimate the volume of wastewater produced during product use. This wastewater volume is then multiplied by emission factors from the DEFRA UK Government GHG Conversion Factors for Company Reporting 2024 to calculate treatment-related emissions. Packaging waste emissions are estimated based on total spend on packaging materials. Typical weight-per-dollar conversion factors are used to estimate total packaging mass across four material categories: plastic, fiber, wood, and metal. Disposal route assumptions are applied to each material type as follows: plastics (40% recycled, 10% reused, 50% landfill), wood (90% reused, 10% landfill), metal—primarily IBC cages (100% recycled), and fiber (50% recycled, 50% landfill). Emission factors from the US EPA Emission Factors Hub 2024 are used to calculate emissions based on material type and end-of-life disposal method. This multi-pronged methodology ensures that both product use-phase waste (e.g., wastewater) and physical waste from product packaging are accurately represented in Solenis's end-of-life emissions profile, using recognized global standards and region-specific emission factors. The full ""Basis of Reporting" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability-regulatory-library/2024-basis-of-reporting.pdf

Downstream leased assets

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided
(7.8.5) Please explain
No downstream leased assets
Franchises
(7.8.1) Evaluation status
Select from: ✓ Not relevant, explanation provided
(7.8.5) Please explain
No Franchises
Investments
(7.8.1) Evaluation status
Select from: ☑ Relevant, calculated
(7.8.2) Emissions in reporting year (metric tons CO2e)

1049

(7.8.3) Emissions calculation methodology

Select all that apply

✓ Spend-based method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

(7.8.5) Please explain

Solenis has one joint venture. Our revenue from the joint venture was combined with emission factors from Supply Chain GHG Emission Factors for US Commodities and Industries v1.3 by NAICS-6. The full ""Basis of Reporting" document can be found - https://sustainability.solenis.com/globalassets/resources/sustainability-regulatory-library/2024-basis-of-reporting.pdf

Other (upstream)

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

No other upstream emissions

Other (downstream)

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

No other downstream emissions [Fixed row]

(7.8.1) Disclose or restate your Scope 3 emissions data for previous years.

Past year 1

(7.8.1.1) End date

09/30/2023

(7.8.1.2) Scope 3: Purchased goods and services (metric tons CO2e)

3941498

(7.8.1.3) Scope 3: Capital goods (metric tons CO2e)

64482

(7.8.1.4) Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e)

79255

(7.8.1.5) Scope 3: Upstream transportation and distribution (metric tons CO2e)

677381

(7.8.1.6) Scope 3: Waste generated in operations (metric tons CO2e)

20530

(7.8.1.7) Scope 3: Business travel (metric tons CO2e)

19032

(7.8.1.8) Scope 3: Employee commuting (metric tons CO2e)

16030

(7.8.1.9) Scope 3: Upstream leased assets (metric tons CO2e)

0

(7.8.1.10) Scope 3: Downstream transportation and distribution (metric tons CO2e) 6167 (7.8.1.11) Scope 3: Processing of sold products (metric tons CO2e) 4590 (7.8.1.12) Scope 3: Use of sold products (metric tons CO2e) 9279107 (7.8.1.13) Scope 3: End of life treatment of sold products (metric tons CO2e) 213271 (7.8.1.14) Scope 3: Downstream leased assets (metric tons CO2e) 0 (7.8.1.15) Scope 3: Franchises (metric tons CO2e) 0 (7.8.1.16) Scope 3: Investments (metric tons CO2e) 1029 (7.8.1.17) Scope 3: Other (upstream) (metric tons CO2e) (7.8.1.18) Scope 3: Other (downstream) (metric tons CO2e) 0

(7.8.1.19) Comment

The changes were due to a variety of factors, including improved ability to calculate Scope 3 emissions and increased business travel necessitated by the Diversey integration process

Past year 2

(7.8.1.1) End date

09/30/2022

(7.8.1.2) Scope 3: Purchased goods and services (metric tons CO2e)

2406964

(7.8.1.3) Scope 3: Capital goods (metric tons CO2e)

30521

(7.8.1.4) Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e)

67647

(7.8.1.5) Scope 3: Upstream transportation and distribution (metric tons CO2e)

675

(7.8.1.6) Scope 3: Waste generated in operations (metric tons CO2e)

12077

(7.8.1.7) Scope 3: Business travel (metric tons CO2e)

3342

(7.8.1.8) Scope 3: Employee commuting (metric tons CO2e)

(7.8.1.9) Scope 3: Upstream leased assets (metric tons CO2e) 7706 (7.8.1.10) Scope 3: Downstream transportation and distribution (metric tons CO2e) 244822 (7.8.1.11) Scope 3: Processing of sold products (metric tons CO2e) 421 (7.8.1.12) Scope 3: Use of sold products (metric tons CO2e) 20 (7.8.1.13) Scope 3: End of life treatment of sold products (metric tons CO2e) 3594 (7.8.1.14) Scope 3: Downstream leased assets (metric tons CO2e) 0 (7.8.1.15) Scope 3: Franchises (metric tons CO2e) 0 (7.8.1.16) Scope 3: Investments (metric tons CO2e) 4353

(7.8.1.17) Scope 3: Other (upstream) (metric tons CO2e)

(7.8.1.18) Scope 3: Other (downstream) (metric tons CO2e)

0

(7.8.1.19) Comment

Calculation method improved compared to 2021

Past year 3

(7.8.1.1) End date

09/30/2021

(7.8.1.2) Scope 3: Purchased goods and services (metric tons CO2e)

2283426

(7.8.1.3) Scope 3: Capital goods (metric tons CO2e)

55323

(7.8.1.4) Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e)

44425

(7.8.1.5) Scope 3: Upstream transportation and distribution (metric tons CO2e)

4402

(7.8.1.6) Scope 3: Waste generated in operations (metric tons CO2e)

1

(7.8.1.7) Scope 3: Business travel (metric tons CO2e)
2444
(7.8.1.8) Scope 3: Employee commuting (metric tons CO2e)
24
(7.8.1.9) Scope 3: Upstream leased assets (metric tons CO2e)
122
(7.8.1.10) Scope 3: Downstream transportation and distribution (metric tons CO2e)
6603
(7.8.1.11) Scope 3: Processing of sold products (metric tons CO2e)
1687
(7.8.1.12) Scope 3: Use of sold products (metric tons CO2e)
14
(7.8.1.13) Scope 3: End of life treatment of sold products (metric tons CO2e)
0
(7.8.1.14) Scope 3: Downstream leased assets (metric tons CO2e)
0
(7.8.1.15) Scope 3: Franchises (metric tons CO2e)

(7.8.1.16) Scope 3: Investments (metric tons CO2e)

8203

(7.8.1.17) Scope 3: Other (upstream) (metric tons CO2e)

0

(7.8.1.18) Scope 3: Other (downstream) (metric tons CO2e)

0

(7.8.1.19) Comment

First year of calculation [Fixed row]

(7.9) Indicate the verification/assurance status that applies to your reported emissions.

	Verification/assurance status
Scope 1	Select from: ☑ Third-party verification or assurance process in place
Scope 2 (location-based or market-based)	Select from: ☑ Third-party verification or assurance process in place
Scope 3	Select from: ☑ Third-party verification or assurance process in place

[Fixed row]

(7.9.1) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.

Row 1

(7.9.1.1) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.1.2) Status in the current reporting year

Select from:

Complete

(7.9.1.3) Type of verification or assurance

Select from:

✓ Limited assurance

(7.9.1.4) Attach the statement

Assurance Letter.pdf

(7.9.1.5) Page/section reference

Entire document

(7.9.1.6) Relevant standard

Select from:

✓ ISAE3000

(7.9.1.7) Proportion of reported emissions verified (%)

(7.9.2) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

Row 1

(7.9.2.1) Scope 2 approach

Select from:

✓ Scope 2 location-based

(7.9.2.2) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.2.3) Status in the current reporting year

Select from:

Complete

(7.9.2.4) Type of verification or assurance

Select from:

✓ Limited assurance

(7.9.2.5) Attach the statement

Assurance Letter.pdf

(7.9.2.6) Page/ section reference

The entire document reflects limited assurance provided by ERM for our 2024 Sustainability Report, covering Scope 1, 2, and 3 emissions. Details of our ESG data table, including Scope 1, 2, and 3, can be found on page 88 of the sustainability report.

(7.9.2.7) Relevant standard

Select from:

✓ ISAE3000

(7.9.2.8) Proportion of reported emissions verified (%)

100

Row 2

(7.9.2.1) Scope 2 approach

Select from:

✓ Scope 2 market-based

(7.9.2.2) Verification or assurance cycle in place

Select from:

Annual process

(7.9.2.3) Status in the current reporting year

Select from:

Complete

(7.9.2.4) Type of verification or assurance

Select from:

✓ Limited assurance

(7.9.2.5) Attach the statement

(7.9.2.6) Page/ section reference

The entire document reflects limited assurance provided by ERM for our 2024 Sustainability Report, covering Scope 1, 2, and 3 emissions. Details of our ESG data table, including Scope 1, 2, and 3, can be found on page 88 of the sustainability report.

(7.9.2.7) Relevant standard

Select from:

✓ ISAE3000

(7.9.2.8) Proportion of reported emissions verified (%)

100 [Add row]

(7.9.3) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.

Row 1

(7.9.3.1) Scope 3 category

Select all that apply

✓ Scope 3: Investments

✓ Scope 3: Capital goods

✓ Scope 3: Business travel

✓ Scope 3: Employee commuting

✓ Scope 3: Use of sold products

☑ Scope 3: Downstream transportation and distribution

☑ Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2)

✓ Scope 3: Processing of sold products

☑ Scope 3: Purchased goods and services

✓ Scope 3: Waste generated in operations

✓ Scope 3: End-of-life treatment of sold products

☑ Scope 3: Upstream transportation and distribution

(7.9.3.2) Verification or assurance cycle in place

Select from:

Annual process

(7.9.3.3) Status in the current reporting year

Select from:

Complete

(7.9.3.4) Type of verification or assurance

Select from:

✓ Limited assurance

(7.9.3.5) Attach the statement

Assurance Letter.pdf

(7.9.3.6) Page/section reference

The entire document reflects limited assurance provided by ERM for our 2024 Sustainability Report, covering Scope 1, 2, and 3 emissions. Details of our ESG data table, including Scope 1, 2, and 3, can be found on page 88 of the sustainability report. A breakdown of our Scope 3 emissions is also available on page 34.

(7.9.3.7) Relevant standard

Select from:

☑ ISAE3000

(7.9.3.8) Proportion of reported emissions verified (%)

100

[Add row]

(7.10) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?

Select from:

✓ Increased

(7.10.1) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.

Change in renewable energy consumption

(7.10.1.1) Change in emissions (metric tons CO2e)

940

(7.10.1.2) Direction of change in emissions

Select from:

✓ Increased

(7.10.1.3) Emissions value (percentage)

0.2

(7.10.1.4) Please explain calculation

Reduction in biogas use on our Helsingborg site (biogas -> natural gas) during the reported year. Site has started using Biogas again and will be reported in next year submission

Other emissions reduction activities

(7.10.1.1) Change in emissions (metric tons CO2e)

5230.7

(7.10.1.2) Direction of change in emissions

Select from:

Decreased

(7.10.1.3) Emissions value (percentage)

1.3

(7.10.1.4) Please explain calculation

Emission reduction projects at our operating sites include installing low-energy LED lighting, implementing heat recovery and efficient steam generation systems, and improving condensate recovery. In addition, Solenis is transitioning its fleet vehicles to hybrids and electric vehicles (EVs).

Divestment

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

No Change.

Acquisitions

(7.10.1.1) Change in emissions (metric tons CO2e) 0 (7.10.1.2) Direction of change in emissions Select from: ✓ No change (7.10.1.3) Emissions value (percentage) 0 (7.10.1.4) Please explain calculation No material acquisitions Mergers (7.10.1.1) Change in emissions (metric tons CO2e) 0 (7.10.1.2) Direction of change in emissions Select from: ✓ No change (7.10.1.3) Emissions value (percentage) 0

(7.10.1.4) Please explain calculation

No Change.

Change in output

(7.10.1.1) Change in emissions (metric tons CO2e)

21708

(7.10.1.2) Direction of change in emissions

Select from:

✓ Increased

(7.10.1.3) Emissions value (percentage)

5.6

(7.10.1.4) Please explain calculation

Prorated emissions based on change in production volume. YoY 6% increase in production

Change in methodology

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

Change in boundary

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

No Change.

Change in physical operating conditions

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

0

(7.10.1.4) Please explain calculation

No Change.

Unidentified

(7.10.1.1) Change in emissions (metric tons CO2e)

8932

(7.10.1.2) Direction of change in emissions

Select from:

Decreased

(7.10.1.3) Emissions value (percentage)

2.3

(7.10.1.4) Please explain calculation

Calculation based on difference between actual change and known changes

Other

(7.10.1.1) Change in emissions (metric tons CO2e)

0

(7.10.1.2) Direction of change in emissions

Select from:

✓ No change

(7.10.1.3) Emissions value (percentage)

(7.10.1.4) Please explain calculation

No Change. [Fixed row]

(7.10.2) Are your emissions performance calculations in 7.10 and 7.10.1 based on a location-based Scope 2 emissions figure or a market-based Scope 2 emissions figure?

Select from:

✓ Market-based

(7.12) Are carbon dioxide emissions from biogenic carbon relevant to your organization?

Select from:

Yes

(7.12.1) Provide the emissions from biogenic carbon relevant to your organization in metric tons CO2.

CO2 emissions from biogenic carbon (metric tons CO2)	Comment
389.7	These emissions relate to the use of biogas at our Helsingborg site in Sweden

[Fixed row]

(7.15) Does your organization break down its Scope 1 emissions by greenhouse gas type?

Select from:

✓ Yes

(7.15.1) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used global warming potential (GWP).

Row 1

(7.15.1.1) Greenhouse gas

Select from:

✓ CO2

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

205215

(7.15.1.3) **GWP** Reference

Select from:

✓ IPCC Fifth Assessment Report (AR5 – 100 year)

Row 2

(7.15.1.1) **Greenhouse** gas

Select from:

✓ CH4

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

135

(7.15.1.3) **GWP** Reference

Select from:

✓ IPCC Fifth Assessment Report (AR5 – 100 year)

Row 3

(7.15.1.1) Greenhouse gas

Select from:

☑ N20

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

173

(7.15.1.3) **GWP** Reference

Select from:

✓ IPCC Fifth Assessment Report (AR5 – 100 year)

Row 4

(7.15.1.1) **Greenhouse** gas

Select from:

✓ HFCs

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

7189

(7.15.1.3) **GWP** Reference

Select from:

☑ IPCC Fifth Assessment Report (AR5 – 100 year)

Row 5

(7.15.1.1) **Greenhouse gas**

✓ PFCs

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

0

(7.15.1.3) **GWP** Reference

Select from:

✓ IPCC Fifth Assessment Report (AR5 – 100 year)

Row 6

(7.15.1.1) **Greenhouse** gas

Select from:

✓ SF6

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

0

(7.15.1.3) **GWP** Reference

Select from:

☑ IPCC Fifth Assessment Report (AR5 – 100 year)

[Add row]

(7.16) Break down your total gross global Scope 1 and 2 emissions by country/area.

Argentina

(7.16.1) Scope 1 emissions (metric tons CO2e)

17.551

150.535
(7.16.2) Scope 2, location-based (metric tons CO2e)
134.458
(7.16.3) Scope 2, market-based (metric tons CO2e)
134.458
Australia
(7.16.1) Scope 1 emissions (metric tons CO2e)
3292.19
(7.16.2) Scope 2, location-based (metric tons CO2e)
3301.258
(7.16.3) Scope 2, market-based (metric tons CO2e)
3223.257
Austria
(7.16.1) Scope 1 emissions (metric tons CO2e)
9.451
(7.16.2) Scope 2, location-based (metric tons CO2e)

(7.16.3) Scope 2, market-based (metric tons CO2e)

Belgium

(7.16.1) Scope 1 emissions (metric tons CO2e)

71.09

(7.16.2) Scope 2, location-based (metric tons CO2e)

110.937

(7.16.3) Scope 2, market-based (metric tons CO2e)

290.949

Brazil

(7.16.1) Scope 1 emissions (metric tons CO2e)

8827.455

(7.16.2) Scope 2, location-based (metric tons CO2e)

5814.459

(7.16.3) Scope 2, market-based (metric tons CO2e)

5814.459

Canada

(7.16.1) Scope 1 emissions (metric tons CO2e)

(7.16.2) Scope 2, location-based (metric tons CO2e)
624.276
(7.16.3) Scope 2, market-based (metric tons CO2e)
211.585
Chile
(7.16.1) Scope 1 emissions (metric tons CO2e)
66.848
(7.16.2) Scope 2, location-based (metric tons CO2e)
331.692
(7.16.3) Scope 2, market-based (metric tons CO2e)
331.692
China
(7.16.1) Scope 1 emissions (metric tons CO2e)
280.088
(7.16.2) Scope 2, location-based (metric tons CO2e)
9122.018
(7.16.3) Scope 2, market-based (metric tons CO2e)
9122.018

Colombia

(7.16.1) Scope 1 emissions (metric tons CO2e)

184.102

(7.16.2) Scope 2, location-based (metric tons CO2e)

149.494

(7.16.3) Scope 2, market-based (metric tons CO2e)

149.494

Costa Rica

(7.16.1) Scope 1 emissions (metric tons CO2e)

7.326

(7.16.2) Scope 2, location-based (metric tons CO2e)

28.814

(7.16.3) Scope 2, market-based (metric tons CO2e)

28.775

Czechia

(7.16.1) Scope 1 emissions (metric tons CO2e)

28.692

(7.16.2) Scope 2, location-based (metric tons CO2e)

(7.16.3)	Scope 2,	market-based ((metric tons (CO2e)
----------	----------	----------------	----------------	-------

213.576

Denmark

(7.16.1) Scope 1 emissions (metric tons CO2e)

2.139

(7.16.2) Scope 2, location-based (metric tons CO2e)

3.754

(7.16.3) Scope 2, market-based (metric tons CO2e)

15.851

Dominican Republic

(7.16.1) Scope 1 emissions (metric tons CO2e)

11.9

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Egypt

(7.16.1) Scope 1 emissions (metric tons CO2e)
65.21
(7.16.2) Scope 2, location-based (metric tons CO2e)
303.767
(7.16.3) Scope 2, market-based (metric tons CO2e)
303.782
Finland
(7.16.1) Scope 1 emissions (metric tons CO2e)
1252.718
(7.16.2) Scope 2, location-based (metric tons CO2e)
228.686
(7.16.3) Scope 2, market-based (metric tons CO2e)
904.181
France
(7.16.1) Scope 1 emissions (metric tons CO2e)
243.074
(7.16.2) Scope 2. location-based (metric tons CO2e)

(7.16.3) Scope 2, market-based (metric tons CO2e)
88.4
Germany
(7.16.1) Scope 1 emissions (metric tons CO2e)
2197.989
(7.16.2) Scope 2, location-based (metric tons CO2e)
15847.269
(7.16.3) Scope 2, market-based (metric tons CO2e)
23849.176
Greece
(7.16.1) Scope 1 emissions (metric tons CO2e)
38.998
(7.16.2) Scope 2, location-based (metric tons CO2e)
200.789
(7.16.3) Scope 2, market-based (metric tons CO2e)
211.899
Guatemala
(7.16.1) Scope 1 emissions (metric tons CO2e)

(7.16.2) Scope 2, location-based (metric tons CO2e) 26.275 (7.16.3) Scope 2, market-based (metric tons CO2e) 26.278 Hong Kong SAR, China (7.16.1) Scope 1 emissions (metric tons CO2e) 2.139 (7.16.2) Scope 2, location-based (metric tons CO2e) 18.306 (7.16.3) Scope 2, market-based (metric tons CO2e) 18.314 Hungary (7.16.1) Scope 1 emissions (metric tons CO2e) 21.977 (7.16.2) Scope 2, location-based (metric tons CO2e) 66.82

(7.16.3) Scope 2, market-based (metric tons CO2e)

India

(7.16.1) Scope 1 emissions (metric tons CO2e)

2232.942

(7.16.2) Scope 2, location-based (metric tons CO2e)

7339.88

(7.16.3) Scope 2, market-based (metric tons CO2e)

7339.88

Indonesia

(7.16.1) Scope 1 emissions (metric tons CO2e)

123.109

(7.16.2) Scope 2, location-based (metric tons CO2e)

1323.968

(7.16.3) Scope 2, market-based (metric tons CO2e)

1323.968

Ireland

(7.16.1) Scope 1 emissions (metric tons CO2e)

(7.16.2) Scope 2, location-based (metric tons CO2e)
8.142
(7.16.3) Scope 2, market-based (metric tons CO2e)
12.296
Israel
(7.16.1) Scope 1 emissions (metric tons CO2e)
35.797
(7.16.2) Scope 2, location-based (metric tons CO2e)
106.558
(7.16.3) Scope 2, market-based (metric tons CO2e)
106.63
Italy
(7.16.1) Scope 1 emissions (metric tons CO2e)
1775.201
(7.16.2) Scope 2, location-based (metric tons CO2e)
1579.154
(7.16.3) Scope 2, market-based (metric tons CO2e)
1800.864

Kenya

(7.16.1) Scope 1 emissions (metric tons CO2e)

76.357

(7.16.2) Scope 2, location-based (metric tons CO2e)

50.405

(7.16.3) Scope 2, market-based (metric tons CO2e)

50.593

Malaysia

(7.16.1) Scope 1 emissions (metric tons CO2e)

2.139

(7.16.2) Scope 2, location-based (metric tons CO2e)

18.142

(7.16.3) Scope 2, market-based (metric tons CO2e)

18.137

Mexico

(7.16.1) Scope 1 emissions (metric tons CO2e)

680.681

(7.16.2) Scope 2, location-based (metric tons CO2e)

(7.16.3) Scope 2, market-based (metric tons CO2e)

2078.094

Morocco

(7.16.1) Scope 1 emissions (metric tons CO2e)

34.796

(7.16.2) Scope 2, location-based (metric tons CO2e)

67.254

(7.16.3) Scope 2, market-based (metric tons CO2e)

67.322

Netherlands

(7.16.1) Scope 1 emissions (metric tons CO2e)

460.169

(7.16.2) Scope 2, location-based (metric tons CO2e)

852.348

(7.16.3) Scope 2, market-based (metric tons CO2e)

1089.947

New Zealand

(7.16.1) Scope 1 emissions (metric tons CO2e) 12.82 (7.16.2) Scope 2, location-based (metric tons CO2e) 15.886 (7.16.3) Scope 2, market-based (metric tons CO2e) 15.875 Nigeria (7.16.1) Scope 1 emissions (metric tons CO2e) 8.546 (7.16.2) Scope 2, location-based (metric tons CO2e) 91.77 (7.16.3) Scope 2, market-based (metric tons CO2e) 91.791 **Norway** (7.16.1) Scope 1 emissions (metric tons CO2e) 265.5 (7.16.2) Scope 2, location-based (metric tons CO2e)

271

(7.16.3) Scope 2, market-based (metric tons CO2e)
8.5
Pakistan
(7.16.1) Scope 1 emissions (metric tons CO2e)
3.052
(7.16.2) Scope 2, location-based (metric tons CO2e)
14.18
(7.16.3) Scope 2, market-based (metric tons CO2e)
14.196
Peru
(7.16.1) Scope 1 emissions (metric tons CO2e)
64.492
(7.16.2) Scope 2, location-based (metric tons CO2e)
12.755
(7.16.3) Scope 2, market-based (metric tons CO2e)
12.727
Philippines
(7.16.1) Scope 1 emissions (metric tons CO2e)

(7.16.2) Scope 2, location-based (metric tons CO2e)

674.599

(7.16.3) Scope 2, market-based (metric tons CO2e)

674.332

Poland

(7.16.1) Scope 1 emissions (metric tons CO2e)

259.156

(7.16.2) Scope 2, location-based (metric tons CO2e)

860.645

(7.16.3) Scope 2, market-based (metric tons CO2e)

959.839

Portugal

(7.16.1) Scope 1 emissions (metric tons CO2e)

72.54

(7.16.2) Scope 2, location-based (metric tons CO2e)

145.159

(7.16.3) Scope 2, market-based (metric tons CO2e)

Puerto Rico

(7.16.1) Scope 1 emissions (metric tons CO2e)

4

(7.16.2) Scope 2, location-based (metric tons CO2e)

0

(7.16.3) Scope 2, market-based (metric tons CO2e)

0

Republic of Korea

(7.16.1) Scope 1 emissions (metric tons CO2e)

32.996

(7.16.2) Scope 2, location-based (metric tons CO2e)

1035.364

(7.16.3) Scope 2, market-based (metric tons CO2e)

1035.364

Romania

(7.16.1) Scope 1 emissions (metric tons CO2e)

(7.16.2) Scope 2, location-based (metric tons CO2e)
62.091
(7.16.3) Scope 2, market-based (metric tons CO2e)
42.846
Russian Federation
(7.16.1) Scope 1 emissions (metric tons CO2e)
95.253
(7.16.2) Scope 2, location-based (metric tons CO2e)
397.087
(7.16.3) Scope 2, market-based (metric tons CO2e)
397.087
Rwanda
(7.16.1) Scope 1 emissions (metric tons CO2e)
4.371
(7.16.2) Scope 2, location-based (metric tons CO2e)
4.283
(7.16.3) Scope 2, market-based (metric tons CO2e)

Saudi Arabia

(7.16.2) Scope 2, location-based (metric tons CO2e)

(7.16.1) Scope 1 emissions (metric tons CO2e) 83.493 (7.16.2) Scope 2, location-based (metric tons CO2e) 88.778 (7.16.3) Scope 2, market-based (metric tons CO2e) 88.805 **Singapore** (7.16.1) Scope 1 emissions (metric tons CO2e) 30.523 (7.16.2) Scope 2, location-based (metric tons CO2e) 97.092 (7.16.3) Scope 2, market-based (metric tons CO2e) 81.18 Slovakia (7.16.1) Scope 1 emissions (metric tons CO2e) 6.655

(7.16.3) Scope 2, market-based (metric tons CO2e)

25.788

South Africa

(7.16.1) Scope 1 emissions (metric tons CO2e)

11170.808

(7.16.2) Scope 2, location-based (metric tons CO2e)

15994.311

(7.16.3) Scope 2, market-based (metric tons CO2e)

15994.311

Spain

(7.16.1) Scope 1 emissions (metric tons CO2e)

1045.608

(7.16.2) Scope 2, location-based (metric tons CO2e)

569.911

(7.16.3) Scope 2, market-based (metric tons CO2e)

617.03

Sweden

(7.16.1) Scope 1 emissions (metric tons CO2e)
1049.686
(7.16.2) Scope 2, location-based (metric tons CO2e)
377.948
(7.16.3) Scope 2, market-based (metric tons CO2e)
543.259
Switzerland
(7.16.1) Scope 1 emissions (metric tons CO2e)
14.88
(7.16.2) Scope 2, location-based (metric tons CO2e)
47.689
(7.16.3) Scope 2, market-based (metric tons CO2e)
o
Taiwan, China
(7.16.1) Scope 1 emissions (metric tons CO2e)
524.389
(7.16.2) Scope 2, location-based (metric tons CO2e)

(7.16.3) Scope 2, market-based (metric tons CO2e)
625.563
Thailand
(7.16.1) Scope 1 emissions (metric tons CO2e)
91.569
(7.16.2) Scope 2, location-based (metric tons CO2e)
529.92
(7.16.3) Scope 2, market-based (metric tons CO2e)
529.724
Turkey
(7.16.1) Scope 1 emissions (metric tons CO2e)
598.725
(7.16.2) Scope 2, location-based (metric tons CO2e)
1253.814
(7.16.3) Scope 2, market-based (metric tons CO2e)
1253.052
Uganda
(7.16.1) Scope 1 emissions (metric tons CO2e)

(7.16.2) Scope 2, location-based (metric tons CO2e)

1.663

(7.16.3) Scope 2, market-based (metric tons CO2e)

1.663

United Arab Emirates

(7.16.1) Scope 1 emissions (metric tons CO2e)

13.872

(7.16.2) Scope 2, location-based (metric tons CO2e)

89.133

(7.16.3) Scope 2, market-based (metric tons CO2e)

89.093

United Kingdom of Great Britain and Northern Ireland

(7.16.1) Scope 1 emissions (metric tons CO2e)

57695.839

(7.16.2) Scope 2, location-based (metric tons CO2e)

3884.552

(7.16.3) Scope 2, market-based (metric tons CO2e)

United Republic of Tanzania

(7.16.1) Scope 1 emissions (metric tons CO2e)

17.342

(7.16.2) Scope 2, location-based (metric tons CO2e)

60.249

(7.16.3) Scope 2, market-based (metric tons CO2e)

60.262

United States of America

(7.16.1) Scope 1 emissions (metric tons CO2e)

81049.022

(7.16.2) Scope 2, location-based (metric tons CO2e)

85254.762

(7.16.3) Scope 2, market-based (metric tons CO2e)

86676.865

Viet Nam

(7.16.1) Scope 1 emissions (metric tons CO2e)

(7.16.2) Scope 2, location-based (metric tons CO2e)

190.688

(7.16.3) Scope 2, market-based (metric tons CO2e)

190.799 [Fixed row]

(7.17) Indicate which gross global Scope 1 emissions breakdowns you are able to provide.

Select all that apply

✓ By activity

(7.17.3) Break down your total gross global Scope 1 emissions by business activity.

	Activity	Scope 1 emissions (metric tons CO2e)
Row 1	Power Generation for Sale to 3rd party	4757
Row 2	Stationary Combustion (excluding power generation)	166713
Row 3	Mobile Combustion	31419
Row 4	Power Generation for internal use	9823

[Add row]

(7.19) Break down your organization's total gross global Scope 1 emissions by sector production activity in metric tons CO2e.

	Gross Scope 1 emissions, metric tons CO2e	Comment
Chemicals production activities	212712	All our activities are based around the manufacture and supply of chemicals

[Fixed row]

(7.20) Indicate which gross global Scope 2 emissions breakdowns you are able to provide.

Select all that apply

☑ By activity

(7.20.3) Break down your total gross global Scope 2 emissions by business activity.

	Activity	Scope 2, location-based (metric tons CO2e)	Scope 2, market-based (metric tons CO2e)
Row 1	Purchased Heat	26285	26285
Row 2	Power for manufacturing plants	120725	131867
Row 3	Power for non-manufacturing sites	15563	17304

[Add row]

(7.21) Break down your organization's total gross global Scope 2 emissions by sector production activity in metric tons CO2e.

	Scope 2, location-based, metric tons CO2e	Scope 2, market-based (if applicable), metric tons CO2e	Comment
Chemicals production activities	162573	175456	All our activities are based around the manufacture and supply of chemicals

[Fixed row]

(7.22) Break down your gross Scope 1 and Scope 2 emissions between your consolidated accounting group and other entities included in your response.

Consolidated accounting group

(7.22.1) Scope 1 emissions (metric tons CO2e)

212712

(7.22.2) Scope 2, location-based emissions (metric tons CO2e)

162573

(7.22.3) Scope 2, market-based emissions (metric tons CO2e)

175456

(7.22.4) Please explain

No other entities

All other entities

(7.22.1) Scope 1 emissions (metric tons CO2e)

(7.22.2) Scope 2, location-based emissions (metric tons CO2e)

0

(7.22.3) Scope 2, market-based emissions (metric tons CO2e)

0

(7.22.4) Please explain

No other entities [Fixed row]

(7.23) Is your organization able to break down your emissions data for any of the subsidiaries included in your CDP response?

Select from:

✓ Not relevant as we do not have any subsidiaries

(7.25) Disclose the percentage of your organization's Scope 3, Category 1 emissions by purchased chemical feedstock.

Row 1

(7.25.1) Purchased feedstock

Select from:

Ammonia

(7.25.2) Percentage of Scope 3, Category 1 tCO2e from purchased feedstock

(7.25.3) Explain calculation methodology

Calculated from volume purchased

Row 2

(7.25.1) Purchased feedstock

Select from:

Methanol

(7.25.2) Percentage of Scope 3, Category 1 tCO2e from purchased feedstock

0.05

(7.25.3) Explain calculation methodology

Calculated from volume purchased

Row 3

(7.25.1) Purchased feedstock

Select from:

Adipic acid

(7.25.2) Percentage of Scope 3, Category 1 tCO2e from purchased feedstock

2.29

(7.25.3) Explain calculation methodology

Calculated from volume purchased

Row 4

(7.25.1) Purchased feedstock

Select from:

☑ Other (please specify) :Acrylonitrile

(7.25.2) Percentage of Scope 3, Category 1 tCO2e from purchased feedstock

4.65

(7.25.3) Explain calculation methodology

Calculated from volume purchased

Row 5

(7.25.1) Purchased feedstock

Select from:

✓ Other (please specify) :Diethylenetriamine

(7.25.2) Percentage of Scope 3, Category 1 tCO2e from purchased feedstock

2.44

(7.25.3) Explain calculation methodology

Calculated from volume purchased

Row 6

(7.25.1) Purchased feedstock

Select from:

☑ Other (please specify) :Epichlorohydrin

(7.25.2) Percentage of Scope 3, Category 1 tCO2e from purchased feedstock

1.61

(7.25.3) Explain calculation methodology

Calculated from volume purchased

Row 7

(7.25.1) Purchased feedstock

Select from:

☑ Other (please specify) :Acrylic Acid

(7.25.2) Percentage of Scope 3, Category 1 tCO2e from purchased feedstock

0.57

(7.25.3) Explain calculation methodology

Calculated from volume purchased

Row 8

(7.25.1) Purchased feedstock

Select from:

✓ Other (please specify) :Methyl Chloride

(7.25.2) Percentage of Scope 3, Category 1 tCO2e from purchased feedstock

0.21

(7.25.3) Explain calculation methodology

Row 9

(7.25.1) Purchased feedstock

Select from:

☑ Other (please specify) :Sodium Hydroxide

(7.25.2) Percentage of Scope 3, Category 1 tCO2e from purchased feedstock

2.33

(7.25.3) Explain calculation methodology

Calculated from volume purchased

Row 10

(7.25.1) Purchased feedstock

Select from:

✓ Other (please specify) :Sodium Hypochlorite

(7.25.2) Percentage of Scope 3, Category 1 tCO2e from purchased feedstock

5.98

(7.25.3) Explain calculation methodology

Calculated from volume purchased

Row 11

(7.25.1) Purchased feedstock

Select from:

☑ Other (please specify) :Chlorine

(7.25.2) Percentage of Scope 3, Category 1 tCO2e from purchased feedstock

0.65

(7.25.3) Explain calculation methodology

Calculated from volume purchased [Add row]

(7.25.1) Disclose sales of products that are greenhouse gases.

Carbon dioxide (CO2)

(7.25.1.1) Sales, metric tons

0

(7.25.1.2) Comment

No sales

Methane (CH4)

(7.25.1.1) Sales, metric tons

0

(7.25.1.2) Comment

No sales

Nitrous oxide (N2O)

Nitrogen trifluoride (NF3)

(7.25.1.1) Sales, metric tons

0

(7.25.1.2) Comment

No sales [Fixed row]

(7.26) Allocate your emissions to your customers listed below according to the goods or services you have sold them in this reporting period.

Row 1

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

✓ Company wide

(7.26.6) Allocation method

Select from: ☑ Allocation based on the volume of products purchased
(7.26.7) Unit for market value or quantity of goods/services supplied
Select from: ☑ Currency
(7.26.8) Market value or quantity of goods/services supplied to the requesting member
4016000
(7.26.9) Emissions in metric tonnes of CO2e
117
(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Natural gas and vehicle fuel
(7.26.12) Allocation verified by a third party?
Select from: ✓ No
(7.26.12) Places symbols have you have identified the CLIC source, including major limitations to this process and

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions are calculated based on the total scope 1 emissions

(7.26.14) Where published information has been used, please provide a reference

Row 2

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 15: Investments

✓ Category 2: Capital goods

✓ Category 6: Business travel

☑ Category 7: Employee commuting

☑ Category 11: Use of sold products

✓ Category 9: Downstream transportation and distribution

☑ Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)

Select all that apply	
Select all mai aboly	

✓ Category 1: Purchased goods and services

☑ Category 10: Processing of sold products

✓ Category 5: Waste generated in operations

☑ Category 12: End-of-life treatment of sold products

☑ Category 4: Upstream transportation and distribution

(7.26.4) Allocation level

Select from:

✓ Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied
Select from: ✓ Currency
(7.26.8) Market value or quantity of goods/services supplied to the requesting member
4016000
(7.26.9) Emissions in metric tonnes of CO2e
3102
(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Chemical raw materials
(7.26.12) Allocation verified by a third party?
Select from: ☑ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions allocated based on upstream Scope 3 emissions

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 3

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

4016000

(7.26.9) Emissions in metric tonnes of CO2e

96

(7.26.10) Uncertainty (±%)

(7.26.11) Major sources of emissions

Purchased electricity and steam

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions are calculated based on the total scope 2 emissions

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 4

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

33147700

(7.26.9) Emissions in metric tonnes of CO2e

963

(7.26.10) Uncertainty (±%)

25

(7.26.11) Major sources of emissions

Natural gas and vehicle fuel

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions are calculated based on the total scope 1 emissions

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 5

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 15: Investments

✓ Category 2: Capital goods

✓ Category 6: Business travel

☑ Category 7: Employee commuting

☑ Category 11: Use of sold products

☑ Category 9: Downstream transportation and distribution

☑ Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)

✓ Category 1: Purchased goods and services

☑ Category 10: Processing of sold products

✓ Category 5: Waste generated in operations

☑ Category 12: End-of-life treatment of sold products

☑ Category 4: Upstream transportation and distribution

(7.26.4) Allocation level

Select from:

✓ Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased
(7.26.7) Unit for market value or quantity of goods/services supplied
Select from: ☑ Currency
(7.26.8) Market value or quantity of goods/services supplied to the requesting member
33147700
(7.26.9) Emissions in metric tonnes of CO2e
25600
(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Chemical raw materials
(7.26.12) Allocation verified by a third party?
Select from: ☑ No
(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
Emissions allocated based on unotroom Scope 2 amissions

Emissions allocated based on upstream Scope 3 emissions

(7.26.14) Where published information has been used, please provide a reference

Row 6

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

33147700

(7.26.9) Emissions in metric tonnes of CO2e

794

(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Purchased electricity and steam
(7.26.12) Allocation verified by a third party?
Select from: ☑ No
(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
Emissions are calculated based on the total scope 2 emissions
(7.26.14) Where published information has been used, please provide a reference
N/A
Row 7
(7.26.1) Requesting member
Select from:
(7.26.2) Scope of emissions
Select from:

(7.26.4) Allocation level

✓ Scope 1

Select from: ☑ Company wide
(7.26.6) Allocation method
Select from: ✓ Allocation based on the volume of products purchased
(7.26.7) Unit for market value or quantity of goods/services supplied
Select from: ☑ Currency
(7.26.8) Market value or quantity of goods/services supplied to the requesting member
53012000
(7.26.9) Emissions in metric tonnes of CO2e
1540
(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Natural gas and vehicle fuel
(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions are calculated based on the total scope 1 emissions

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 8

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 15: Investments

✓ Category 2: Capital goods

✓ Category 9: Downstream transportation and distribution

☑ Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)

✓ Category 6: Business travel ✓ Category 7: Employee commuting

✓ Category 11: Use of sold products

(7.26.4) Allocation level

Select from:

✓ Category 1: Purchased goods and services

☑ Category 10: Processing of sold products

✓ Category 5: Waste generated in operations

☑ Category 12: End-of-life treatment of sold products

☑ Category 4: Upstream transportation and distribution

✓ Company wide
(7.26.6) Allocation method
Select from: ☑ Allocation based on the volume of products purchased
(7.26.7) Unit for market value or quantity of goods/services supplied
Select from: ☑ Currency
(7.26.8) Market value or quantity of goods/services supplied to the requesting member
53012000
(7.26.9) Emissions in metric tonnes of CO2e
40941
(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Chemical raw materials
(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 9

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

53012000

(7.26.9) Emissions in metric tonnes of CO2e
1270
(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Purchased electricity and steam
(7.26.12) Allocation verified by a third party?
Select from: ✓ No
(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
Emissions are calculated based on the total scope 2 emissions
(7.26.14) Where published information has been used, please provide a reference
N/A
Row 10
(7.26.1) Requesting member
Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

24674000

(7.26.9) Emissions in metric tonnes of CO2e

717

(7.26.10) Uncertainty (±%)

25

(7.26.11) Major sources of emissions

Natural gas and vehicle fuel

(7.26.12) Allocation verified by a third party?

Select from:

V No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions are calculated based on the total scope 1 emissions

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 11

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 15: Investments

✓ Category 2: Capital goods

✓ Category 6: Business travel

☑ Category 7: Employee commuting

☑ Category 11: Use of sold products

☑ Category 9: Downstream transportation and distribution

☑ Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)

✓ Category 1: Purchased goods and services

☑ Category 10: Processing of sold products

✓ Category 5: Waste generated in operations

☑ Category 12: End-of-life treatment of sold products

☑ Category 4: Upstream transportation and distribution

(7.26.4) Allocation level

Select from: ☑ Company wide
(7.26.6) Allocation method
Select from: ☑ Allocation based on the volume of products purchased
(7.26.7) Unit for market value or quantity of goods/services supplied
Select from: ☑ Currency
(7.26.8) Market value or quantity of goods/services supplied to the requesting member
24674000
(7.26.9) Emissions in metric tonnes of CO2e
19056
(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Chemical raw materials
(7.26.12) Allocation verified by a third party?
Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions allocated based on upstream Scope 3 emissions.

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 12

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member
24674000
(7.26.9) Emissions in metric tonnes of CO2e
591
(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Purchased electricity and steam
(7.26.12) Allocation verified by a third party?
Select from: ☑ No
(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
Emissions are calculated based on the total scope 2 emissions
(7.26.14) Where published information has been used, please provide a reference

N/A

Row 13

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

178000000

(7.26.9) Emissions in metric tonnes of CO2e

5170

(7.26.10) Uncertainty (±%)

25

(7.26.11) Major sources of emissions

Natural gas and vehicle fuel

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions are calculated based on the total scope 1 emissions

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 14

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 15: Investments

✓ Category 2: Capital goods

☑ Category 6: Business travel

☑ Category 7: Employee commuting

☑ Category 11: Use of sold products

☑ Category 9: Downstream transportation and distribution

✓ Category 1: Purchased goods and services

✓ Category 10: Processing of sold products

✓ Category 5: Waste generated in operations

☑ Category 12: End-of-life treatment of sold products

☑ Category 4: Upstream transportation and distribution

☑ Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)
(7.26.4) Allocation level
Select from: ☑ Company wide
(7.26.6) Allocation method
Select from: ✓ Allocation based on the volume of products purchased
(7.26.7) Unit for market value or quantity of goods/services supplied
Select from: ☑ Currency
(7.26.8) Market value or quantity of goods/services supplied to the requesting member
178000000
(7.26.9) Emissions in metric tonnes of CO2e
137469
(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Chemical raw materials
(7.26.12) Allocation verified by a third party?
Select from:

_			
W	N	d٢	١

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions allocated based on upstream Scope 3 emissions.

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 15

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

178000000

(7.26.9) Emissions in metric tonnes of CO2e

4264

(7.26.10) Uncertainty (±%)

25

(7.26.11) Major sources of emissions

Purchased electricity and steam

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions are calculated based on the total scope 2 emissions

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 16

(7.26.1) Requesting member

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

☑ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

9143000

(7.26.9) Emissions in metric tonnes of CO2e

266

(7.26.10) Uncertainty (±%)

25

(7.26.11) Major sources of emissions

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions are calculated based on the total scope 1 emissions

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 17

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 15: Investments

✓ Category 2: Capital goods

✓ Category 6: Business travel

✓ Category 7: Employee commuting

✓ Category 1: Purchased goods and services

☑ Category 10: Processing of sold products

✓ Category 5: Waste generated in operations

☑ Category 12: End-of-life treatment of sold products

☑ Category 11: Use of sold products

☑ Category 4: Upstream transportation and distribution

- ☑ Category 9: Downstream transportation and distribution
- ☑ Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

9143000

(7.26.9) Emissions in metric tonnes of CO2e

7061

(7.26.10) Uncertainty (±%)

25

(7.26.11) Major sources of emissions

Chemical raw materials

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions allocated based on upstream Scope 3 emissions.

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 18

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

9143000

(7.26.9) Emissions in metric tonnes of CO2e

219

(7.26.10) Uncertainty (±%)

25

(7.26.11) Major sources of emissions

Purchased electricity and steam

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions are calculated based on the total scope 2 emissions

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 19

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

44669000

(7.26.9) Emissions in metric tonnes of CO2e

1297

(7.26.10) Uncertainty (±%)

(7.26.11) Major sources of emissions

Natural gas and vehicle fuel

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions are calculated based on the total scope 1 emissions

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 20

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 15: Investments

☑ Category 1: Purchased goods and services

- ✓ Category 2: Capital goods
- ✓ Category 6: Business travel
- ☑ Category 7: Employee commuting
- ☑ Category 11: Use of sold products
- ☑ Category 9: Downstream transportation and distribution
- ☑ Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)

- ☑ Category 10: Processing of sold products
- ✓ Category 5: Waste generated in operations
- ☑ Category 12: End-of-life treatment of sold products
- ✓ Category 4: Upstream transportation and distribution

(7.26.4) Allocation level

Select from:

✓ Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

44669000

(7.26.9) Emissions in metric tonnes of CO2e

34498

(7.26.10) Uncertainty (±%)

(7.26.11) Major sources of emissions

Chemical raw materials

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions allocated based on upstream Scope 3 emissions.

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 21

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

✓ Company wide

(7.26.6) Allocation method

Select from: ☑ Allocation based on the volume of products purchased
(7.26.7) Unit for market value or quantity of goods/services supplied
Select from: ☑ Currency
(7.26.8) Market value or quantity of goods/services supplied to the requesting member
44669000
(7.26.9) Emissions in metric tonnes of CO2e
1070
(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Purchased electricity and steam
(7.26.12) Allocation verified by a third party?
Select from: ☑ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions allocated based on upstream Scope 2 emissions.

(7.26.14) Where published information has been used, please provide a reference

Row 22

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

10981000

(7.26.9) Emissions in metric tonnes of CO2e

(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Natural gas and vehicle fuel
(7.26.12) Allocation verified by a third party?
Select from: ☑ No
(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
Emissions are calculated based on the total scope 1 emissions
(7.26.14) Where published information has been used, please provide a reference
N/A
Row 23
(7.26.1) Requesting member
Select from:
(7.26.2) Scope of emissions
Select from:

(7.26.3) Scope 3 category(ies)

✓ Scope 3

Select all that apply

✓ Category 15: Investments

✓ Category 2: Capital goods

✓ Category 6: Business travel

☑ Category 7: Employee commuting

☑ Category 11: Use of sold products

☑ Category 9: Downstream transportation and distribution

☑ Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)

✓ Category 1: Purchased goods and services

☑ Category 10: Processing of sold products

✓ Category 5: Waste generated in operations

☑ Category 12: End-of-life treatment of sold products

☑ Category 4: Upstream transportation and distribution

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

10981000

(7.26.9) Emissions in metric tonnes of CO2e

8481

(7.26.10) Uncertainty (±%)

(7.26.11) Major sources of emissions

Chemical raw material

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions allocated based on upstream Scope 3 emissions

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 24

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

10981000

(7.26.9) Emissions in metric tonnes of CO2e

263

(7.26.10) Uncertainty (±%)

25

(7.26.11) Major sources of emissions

Purchased electricity and steam

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions allocated based on upstream Scope 2 emissions.

(7.26.14) Where published information has been used, please provide a reference N/A **Row 25** (7.26.1) Requesting member Select from: (7.26.2) Scope of emissions Select from: ✓ Scope 1 (7.26.4) Allocation level Select from: Company wide (7.26.6) Allocation method Select from: ✓ Allocation based on the volume of products purchased (7.26.7) Unit for market value or quantity of goods/services supplied Select from: Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

45247000

(7.26.9) Emissions in metric tonnes of CO2e

(7.26.10) Uncertainty (±%)

25

(7.26.11) Major sources of emissions

Natural gas and vehicle fuel

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions are calculated based on the total scope 1 emissions

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 26

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 15: Investments

✓ Category 2: Capital goods

✓ Category 6: Business travel

☑ Category 7: Employee commuting

✓ Category 11: Use of sold products

☑ Category 9: Downstream transportation and distribution

☑ Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)

✓ Category 1: Purchased goods and services

☑ Category 10: Processing of sold products

✓ Category 5: Waste generated in operations

✓ Category 12: End-of-life treatment of sold products

☑ Category 4: Upstream transportation and distribution

(7.26.4) Allocation level

Select from:

Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

45247000

(7.26.9) Emissions in metric tonnes of CO2e

(7.26.10) Uncertainty (±%)

25

(7.26.11) Major sources of emissions

Chemical raw material

(7.26.12) Allocation verified by a third party?

Select from:

✓ No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions allocated based on upstream Scope 3 emissions

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 27

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 2: market-based

(7.26.4) Allocation level

Select from: ✓ Company wide
(7.26.6) Allocation method
Select from: ✓ Allocation based on the volume of products purchased
(7.26.7) Unit for market value or quantity of goods/services supplied
Select from: ☑ Currency
(7.26.8) Market value or quantity of goods/services supplied to the requesting member
45247000
(7.26.9) Emissions in metric tonnes of CO2e
1084
(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Purchased electricity and steam
(7.26.12) Allocation verified by a third party?

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions allocated based on upstream Scope 2 emissions.

(7.26.14) Where published information has been used, please provide a reference

N/A

Row 28

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 1

(7.26.4) Allocation level

Select from:

✓ Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member 6999000 (7.26.9) Emissions in metric tonnes of CO2e 203 (7.26.10) Uncertainty (±%) 25 (7.26.11) Major sources of emissions Natural gas and vehicle fuel (7.26.12) Allocation verified by a third party? Select from: ✓ No (7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made Emissions are calculated based on the total scope 1 emissions (7.26.14) Where published information has been used, please provide a reference N/A

Row 29

(7.26.1) Requesting member

Select from:

(7.26.2) Scope of emissions

Select from:

✓ Scope 3

(7.26.3) Scope 3 category(ies)

Select all that apply

✓ Category 15: Investments

✓ Category 2: Capital goods

✓ Category 6: Business travel

✓ Category 7: Employee commuting

☑ Category 11: Use of sold products

☑ Category 9: Downstream transportation and distribution

☑ Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)

☑ Category 1: Purchased goods and services

✓ Category 10: Processing of sold products

✓ Category 5: Waste generated in operations

☑ Category 12: End-of-life treatment of sold products

☑ Category 4: Upstream transportation and distribution

(7.26.4) Allocation level

Select from:

☑ Company wide

(7.26.6) Allocation method

Select from:

✓ Allocation based on the volume of products purchased

(7.26.7) Unit for market value or quantity of goods/services supplied

Select from:

✓ Currency

(7.26.8) Market value or quantity of goods/services supplied to the requesting member

(7.26.9) Emissions in metric tonnes of CO2e
5405
(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions
Chemical raw material
(7.26.12) Allocation verified by a third party?
Select from: ✓ No
(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made
Emissions allocated based on upstream Scope 3 emissions
(7.26.14) Where published information has been used, please provide a reference
N/A
Row 30
(7.26.1) Requesting member
Select from:
(7.26.2) Scope of emissions

Select from:

7 Coop of the second
✓ Scope 2: market-based
(7.26.4) Allocation level
Select from: ☑ Company wide
(7.26.6) Allocation method
Select from: ✓ Allocation based on the volume of products purchased
(7.26.7) Unit for market value or quantity of goods/services supplied
Select from: ☑ Currency
(7.26.8) Market value or quantity of goods/services supplied to the requesting member
6999000
(7.26.9) Emissions in metric tonnes of CO2e
168
(7.26.10) Uncertainty (±%)
25
(7.26.11) Major sources of emissions

Purchased electricity and steam

(7.26.12) Allocation verified by a third party?

Select from:

V No

(7.26.13) Please explain how you have identified the GHG source, including major limitations to this process and assumptions made

Emissions allocated based on upstream Scope 2 emissions.

(7.26.14) Where published information has been used, please provide a reference

N/A [Add row]

(7.27) What are the challenges in allocating emissions to different customers, and what would help you to overcome these challenges?

Row 1

(7.27.1) Allocation challenges

Select from:

☑ Customer base is too large and diverse to accurately track emissions to the customer level

(7.27.2) Please explain what would help you overcome these challenges

The large number of products and production sites within Solenis makes it difficult to allocate emissions at a customer level. Shared best practice on data management and emissions calculations will help improve the allocations.

[Add row]

(7.28) Do you plan to develop your capabilities to allocate emissions to your customers in the future?

(7.28.1) Do you plan to develop your capabilities to allocate emissions to your customers in the future?

\sim		•	
$\sim \Delta$	lect	tro	m·
ᇰ	ししし	$H \cup H$,,,,

Yes

(7.28.2) Describe how you plan to develop your capabilities

Solenis is improving its product carbon footprint methodology. This will increase the automation of the calculations allowing emissions to be allocated to customers at a product level.

[Fixed row]

(7.29) What percentage of your total operational spend in the reporting year was on energy?

Select from:

✓ More than 0% but less than or equal to 5%

(7.30) Select which energy-related activities your organization has undertaken.

	Indicate whether your organization undertook this energy-related activity in the reporting year
Consumption of fuel (excluding feedstocks)	Select from: ✓ Yes
Consumption of purchased or acquired electricity	Select from: ✓ Yes
Consumption of purchased or acquired heat	Select from: ✓ Yes
Consumption of purchased or acquired steam	Select from: ✓ Yes
Consumption of purchased or acquired cooling	Select from:

	Indicate whether your organization undertook this energy-related activity in the reporting year
	☑ No
Generation of electricity, heat, steam, or cooling	Select from: ☑ Yes

[Fixed row]

(7.30.1) Report your organization's energy consumption totals (excluding feedstocks) in MWh.

Consumption of fuel (excluding feedstock)

(7.30.1.1) Heating value

Select from:

☑ HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

2130.6

(7.30.1.3) MWh from non-renewable sources

1064478.6

(7.30.1.4) Total (renewable + non-renewable) MWh

1066609.20

Consumption of purchased or acquired electricity

(7.30.1.1) Heating value

Select from:

✓ HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

9182.6

(7.30.1.3) MWh from non-renewable sources

314695.2

(7.30.1.4) Total (renewable + non-renewable) MWh

323877.80

Consumption of purchased or acquired heat

(7.30.1.1) Heating value

Select from:

☑ HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

0

(7.30.1.3) MWh from non-renewable sources

1228.1

(7.30.1.4) Total (renewable + non-renewable) MWh

1228.10

Consumption of purchased or acquired steam

(7.30.1.1) **Heating value**

Select from:

☑ HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

0

(7.30.1.3) MWh from non-renewable sources

114285.8

(7.30.1.4) Total (renewable + non-renewable) MWh

114285.80

Consumption of self-generated non-fuel renewable energy

(7.30.1.1) Heating value

Select from:

☑ HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

113.42

(7.30.1.4) Total (renewable + non-renewable) MWh

113.42

Total energy consumption

(7.30.1.1) Heating value

Select from:

☑ HHV (higher heating value)

(7.30.1.2) MWh from renewable sources

11426.6

(7.30.1.3) MWh from non-renewable sources

1494687.7

(7.30.1.4) Total (renewable + non-renewable) MWh

1506114.30 [Fixed row]

(7.30.3) Report your organization's energy consumption totals (excluding feedstocks) for chemical production activities in MWh.

Consumption of fuel (excluding feedstocks)

(7.30.3.1) Heating value

Select from:

☑ HHV (higher heating value)

(7.30.3.2) MWh consumed from renewable sources inside chemical sector boundary

2131

(7.30.3.3) MWh consumed from non-renewable sources inside chemical sector boundary (excluding recovered waste heat/gases)

(7.30.3.4) MWh consumed from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary

0

(7.30.3.5) Total MWh (renewable + non-renewable + MWh from recovered waste heat/gases) consumed inside chemical sector boundary

1066610.00

Consumption of purchased or acquired electricity

(7.30.3.1) Heating value

Select from:

✓ HHV (higher heating value)

(7.30.3.2) MWh consumed from renewable sources inside chemical sector boundary

9183

(7.30.3.3) MWh consumed from non-renewable sources inside chemical sector boundary (excluding recovered waste heat/gases)

314391

(7.30.3.4) MWh consumed from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary

(7.30.3.5) Total MWh (renewable + non-renewable + MWh from recovered waste heat/gases) consumed inside chemical sector boundary

323574.00

Consumption of purchased or acquired heat

(7.30.3.1) **Heating** value

Select from:

✓ HHV (higher heating value)

(7.30.3.2) MWh consumed from renewable sources inside chemical sector boundary

0

(7.30.3.3) MWh consumed from non-renewable sources inside chemical sector boundary (excluding recovered waste heat/gases)

1228

(7.30.3.4) MWh consumed from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary

0

(7.30.3.5) Total MWh (renewable + non-renewable + MWh from recovered waste heat/gases) consumed inside chemical sector boundary

1228.00

Consumption of purchased or acquired steam

(7.30.3.1) Heating value

Select from:

✓ HHV (higher heating value)

(7.30.3.2) MWh consumed from renewable sources inside chemical sector boundary

0

(7.30.3.3) MWh consumed from non-renewable sources inside chemical sector boundary (excluding recovered waste heat/gases)

114286

(7.30.3.4) MWh consumed from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary

0

(7.30.3.5) Total MWh (renewable + non-renewable + MWh from recovered waste heat/gases) consumed inside chemical sector boundary

114286.00

Consumption of self-generated non-fuel renewable energy

(7.30.3.1) Heating value

Select from:

✓ HHV (higher heating value)

(7.30.3.2) MWh consumed from renewable sources inside chemical sector boundary

113.42

(7.30.3.5) Total MWh (renewable + non-renewable + MWh from recovered waste heat/gases) consumed inside chemical sector boundary

113.42

Total energy consumption

(7.30.3.1) Heating value

Select from:

✓ HHV (higher heating value)

(7.30.3.2) MWh consumed from renewable sources inside chemical sector boundary

11427

(7.30.3.3) MWh consumed from non-renewable sources inside chemical sector boundary (excluding recovered waste heat/gases)

1494383

(7.30.3.4) MWh consumed from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary

0

(7.30.3.5) Total MWh (renewable + non-renewable + MWh from recovered waste heat/gases) consumed inside chemical sector boundary

1505810.00 [Fixed row]

(7.30.6) Select the applications of your organization's consumption of fuel.

	Indicate whether your organization undertakes this fuel application
Consumption of fuel for the generation of electricity	Select from: ✓ Yes
Consumption of fuel for the generation of heat	Select from: ✓ Yes
Consumption of fuel for the generation of steam	Select from: ✓ Yes
Consumption of fuel for the generation of cooling	Select from: ☑ No
Consumption of fuel for co-generation or tri-generation	Select from: ✓ Yes

[Fixed row]

(7.30.7) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.

Sustainable biomass

(7.30.7.1) Heating value

Select from:

✓ HHV

(7.30.7.2) Total fuel MWh consumed by the organization

2131

(7.30.7.3) MWh fuel consumed for self-generation of electricity

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.5) MWh fuel consumed for self-generation of steam

2131

(7.30.7.7) MWh fuel consumed for self-cogeneration or self-trigeneration

0

(7.30.7.8) Comment

Helsingborg Biogas

Other biomass

(7.30.7.1) Heating value

Select from:

✓ HHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

(7.30.7.5) MWh fuel consumed for self-generation of steam
0
(7.30.7.7) MWh fuel consumed for self- cogeneration or self-trigeneration
o
(7.30.7.8) Comment
N/A
Other renewable fuels (e.g. renewable hydrogen)
(7.30.7.1) Heating value
Select from: ✓ HHV
(7.30.7.2) Total fuel MWh consumed by the organization
1532
(7.30.7.3) MWh fuel consumed for self-generation of electricity
o
(7.30.7.4) MWh fuel consumed for self-generation of heat
1532
(7.30.7.5) MWh fuel consumed for self-generation of steam
0
(7.30.7.7) MWh fuel consumed for self- cogeneration or self-trigeneration

(7.30.7.8) Comment

Ethanol Vehicle

Coal

(7.30.7.1) Heating value

Select from:

✓ HHV

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.5) MWh fuel consumed for self-generation of steam

0

(7.30.7.7) MWh fuel consumed for self-cogeneration or self-trigeneration

0

(7.30.7.8) Comment

No Coal used

Oil

(7.30.7.1) Heating value

Select from:

✓ HHV

(7.30.7.2) Total fuel MWh consumed by the organization

155738

(7.30.7.3) MWh fuel consumed for self-generation of electricity

1466

(7.30.7.4) MWh fuel consumed for self-generation of heat

135713

(7.30.7.5) MWh fuel consumed for self-generation of steam

18559

(7.30.7.7) MWh fuel consumed for self-cogeneration or self-trigeneration

0

(7.30.7.8) Comment

Diesel, Gasoline, and Heating/Fuel Oil usage within operation.

Gas

(7.30.7.1) Heating value

Select from:

(7.30.7.2) Total fuel MWh consumed by the organization

907207

(7.30.7.3) MWh fuel consumed for self-generation of electricity

60

(7.30.7.4) MWh fuel consumed for self-generation of heat

201680

(7.30.7.5) MWh fuel consumed for self-generation of steam

441818

(7.30.7.7) MWh fuel consumed for self-cogeneration or self-trigeneration

242917

(7.30.7.8) Comment

Natural Gas & LPG usage within operation

Other non-renewable fuels (e.g. non-renewable hydrogen)

(7.30.7.1) Heating value

Select from:

✓ HHV

(7.30.7.2) Total fuel MWh consumed by the organization

(7.30.7.3) MWh fuel consumed for self-generation of electricity
0
(7.30.7.4) MWh fuel consumed for self-generation of heat
O
(7.30.7.5) MWh fuel consumed for self-generation of steam
20732
(7.30.7.7) MWh fuel consumed for self- cogeneration or self-trigeneration
0
(7.30.7.8) Comment
Waste methanol
Total fuel
(7.30.7.1) Heating value
Select from: ☑ HHV
(7.30.7.2) Total fuel MWh consumed by the organization
1066609
(7.30.7.3) MWh fuel consumed for self-generation of electricity
1526
(7.30.7.4) MWh fuel consumed for self-generation of heat

(7.30.7.5) MWh fuel consumed for self-generation of steam

483241

(7.30.7.7) MWh fuel consumed for self-cogeneration or self-trigeneration

242917

(7.30.7.8) Comment

Total fuel usage within operation [Fixed row]

(7.30.9) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed in the reporting year.

Electricity

(7.30.9.1) Total Gross generation (MWh)

57311

(7.30.9.2) Generation that is consumed by the organization (MWh)

38784

(7.30.9.3) Gross generation from renewable sources (MWh)

0

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

Heat

(7.30.9.1) Total Gross generation (MWh)

274530

(7.30.9.2) Generation that is consumed by the organization (MWh)

274530

(7.30.9.3) Gross generation from renewable sources (MWh)

0

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

0

Steam

(7.30.9.1) Total Gross generation (MWh)

520432

(7.30.9.2) Generation that is consumed by the organization (MWh)

506200

(7.30.9.3) Gross generation from renewable sources (MWh)

1726

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

Cooling

(7.30.9.1) Total Gross generation (MWh)

0

(7.30.9.2) Generation that is consumed by the organization (MWh)

0

(7.30.9.3) Gross generation from renewable sources (MWh)

0

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

0 [Fixed row]

(7.30.11) Provide details on electricity, heat, steam, and cooling your organization has generated and consumed for chemical production activities.

Electricity

(7.30.11.1) Total gross generation inside chemicals sector boundary (MWh)

57311

(7.30.11.2) Generation that is consumed inside chemicals sector boundary (MWh)

38784

(7.30.11.3) Generation from renewable sources inside chemical sector boundary (MWh)

(7.30.11.4) Generation from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary (MWh)

0

Heat

(7.30.11.1) Total gross generation inside chemicals sector boundary (MWh)

274530

(7.30.11.2) Generation that is consumed inside chemicals sector boundary (MWh)

274530

(7.30.11.3) Generation from renewable sources inside chemical sector boundary (MWh)

0

(7.30.11.4) Generation from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary (MWh)

0

Steam

(7.30.11.1) Total gross generation inside chemicals sector boundary (MWh)

520432

(7.30.11.2) Generation that is consumed inside chemicals sector boundary (MWh)

(7.30.11.3) Generation from renewable sources inside chemical sector boundary (MWh)

1726

(7.30.11.4) Generation from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary (MWh)

0

Cooling

(7.30.11.1) Total gross generation inside chemicals sector boundary (MWh)

0

(7.30.11.2) Generation that is consumed inside chemicals sector boundary (MWh)

0

(7.30.11.3) Generation from renewable sources inside chemical sector boundary (MWh)

0

(7.30.11.4) Generation from waste heat/gases recovered from processes using fuel feedstocks inside chemical sector boundary (MWh)

0 [Fixed row]

(7.30.14) Provide details on the electricity, heat, steam, and/or cooling amounts that were accounted for at a zero or near-zero emission factor in the market-based Scope 2 figure reported in 7.7.

Row 1

(7.30.14.1) Country/area

Select from:

✓ United Kingdom of Great Britain and Northern Ireland

(7.30.14.2) Sourcing method

Select from:

☑ Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

✓ Electricity

(7.30.14.4) Low-carbon technology type

Select from:

☑ Renewable energy mix, please specify :Supplier mix

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

5019

(7.30.14.6) Tracking instrument used

Select from:

Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

✓ United Kingdom of Great Britain and Northern Ireland

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

SA	lect	from:	
UC1	ひしょ	II OIII.	

✓ No

(7.30.14.10) Comment

Renewable energy contract at our UK site

Row 3

(7.30.14.1) Country/area

Select from:

☑ Spain

(7.30.14.2) Sourcing method

Select from:

☑ Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

✓ Electricity

(7.30.14.4) Low-carbon technology type

Select from:

✓ Renewable energy mix, please specify :supplier mix

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

1141

(7.30.14.6) Tracking instrument used

Select from: ✓ Contract
(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute
Select from: ☑ Spain
(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?
Select from: ☑ No
(7.30.14.10) Comment
Renewable energy contract at our Spain site
Row 4
(7.30.14.1) Country/area
Select from: ☑ Germany
(7.30.14.2) Sourcing method
Select from: ☑ Retail supply contract with an electricity supplier (retail green electricity)
(7.30.14.3) Energy carrier
Select from:

✓ Electricity

Selec	t from:
00,00	t ii Oiii.

☑ Renewable energy mix, please specify :Supplier mix

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

549

(7.30.14.6) Tracking instrument used

Select from:

Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

Germany

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

✓ No

(7.30.14.10) Comment

Renewable energy contract at our Germany site

Row 5

(7.30.14.1) Country/area

Select from:

✓ Italy

(7.30.14.2) Sourcing method

✓ Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

Electricity

(7.30.14.4) Low-carbon technology type

Select from:

☑ Renewable energy mix, please specify :Supplier mix

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

1898

(7.30.14.6) Tracking instrument used

Select from:

Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

Italy

(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?

Select from:

✓ No

(7.30.14.10) Comment

Renewable energy contract at our Italy site

Row 6

(7.30.14.1) Country/area

Select from:

Finland

(7.30.14.2) Sourcing method

Select from:

☑ Retail supply contract with an electricity supplier (retail green electricity)

(7.30.14.3) Energy carrier

Select from:

☑ Electricity

(7.30.14.4) Low-carbon technology type

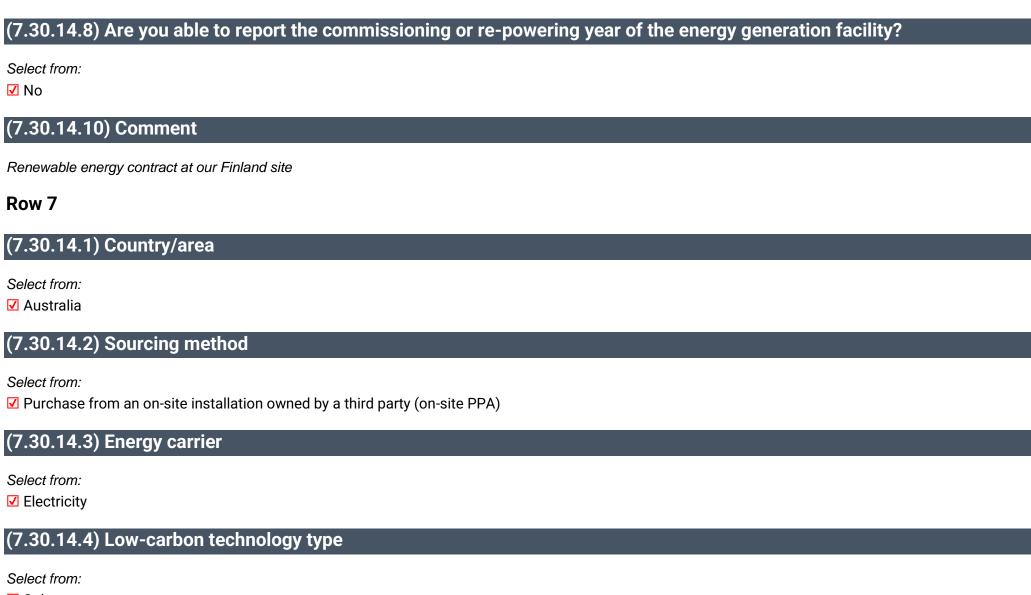
Select from:

☑ Hydropower (capacity unknown)

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

574

(7.30.14.6) Tracking instrument used


Select from:

Contract

(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute

Select from:

▼ Finland

✓ Solar

(7.30.14.5) Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)

(7.30.14.6) Tracking instrument used
(7.30.14.6) Tracking instrument used
Select from:
✓ Contract
(7.30.14.7) Country/area of origin (generation) of the low-carbon energy or energy attribute
Select from:
✓ Australia
(7.30.14.8) Are you able to report the commissioning or re-powering year of the energy generation facility?
Select from:
✓ Yes
(7.30.14.9) Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)
2022
(7.30.14.10) Comment
On site Solar power generation at our Australia site
[Add row]
(7.30.16) Provide a breakdown by country/area of your electricity/heat/steam/cooling consumption in the reporting year.
Argentina
(7.30.16.1) Consumption of purchased electricity (MWh)
495.42

(7.30.16.2) Consumption of self-generated electricity (MWh)

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

633.81

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

1129.23

Australia

(7.30.16.1) Consumption of purchased electricity (MWh)

4687

(7.30.16.2) Consumption of self-generated electricity (MWh)

113.42

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

14559.6

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

19360.02

Austria

(7.30.16.1) Consumption of purchased electricity (MWh)

91.41

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

41.86

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

133.27

Belgium

(7.30.16.1) Consumption of purchased electricity (MWh)

694.39

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 314.83 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 1009.22 **Brazil** (7.30.16.1) Consumption of purchased electricity (MWh) 24671.83 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 4264.7 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 32187.2 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 61123.73 Canada (7.30.16.1) Consumption of purchased electricity (MWh)

4701.69

China

(7.30.16.1) Consumption of purchased electricity (MWh)

9254.62

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

13387.03

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

1099.79

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

23741.44

Colombia

(7.30.16.1) Consumption of purchased electricity (MWh)

430.17

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

799.71

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

1229.88

Costa Rica

(7.30.16.1) Consumption of purchased electricity (MWh)

82.8

(7.30.16.2) Consumption of self-generated electricity (MWh)

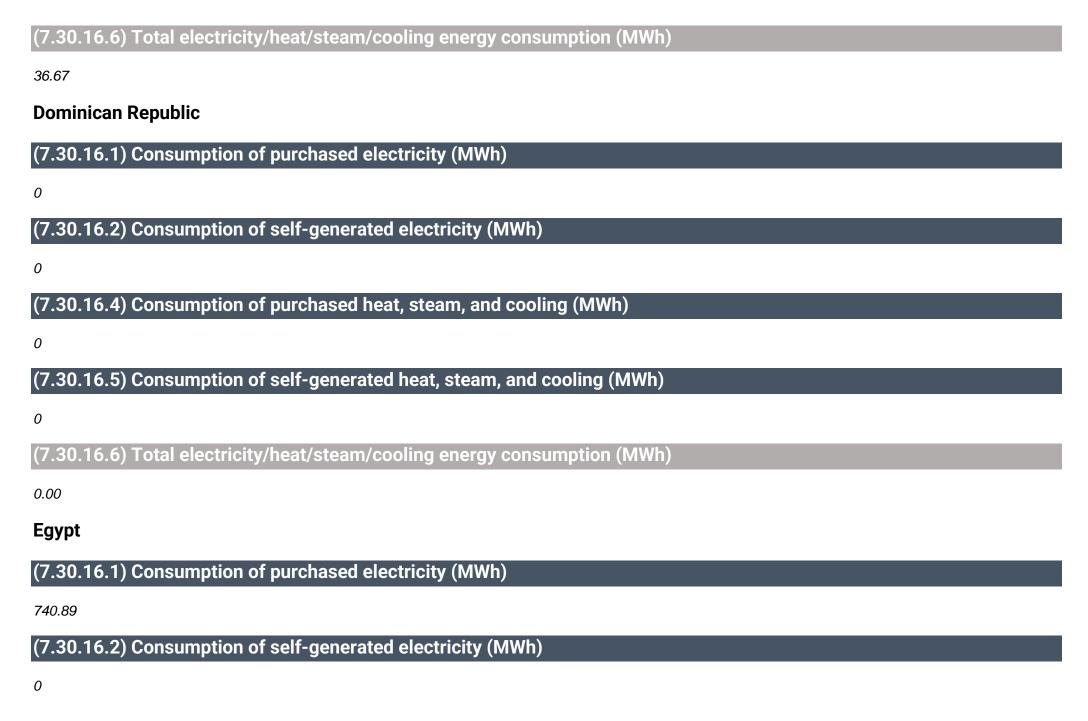
0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

32.44


(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

115.24

Czechia

(7.30.16.1) Consumption of purchased electricity (MWh)

(7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 127.06 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 451.36 **Denmark** (7.30.16.1) Consumption of purchased electricity (MWh) 27.2 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 9.47

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 288.79 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 1029.68 **Finland** (7.30.16.1) Consumption of purchased electricity (MWh) 2174.74 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 5545.98 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 7720.72

France

(7.30.16.1) Consumption of purchased electricity (MWh) 2156.1 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 1076.49 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 3232.59 Germany (7.30.16.1) Consumption of purchased electricity (MWh) 22575.29 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 33654.77 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

65897.73

Greece

(7.30.16.1) Consumption of purchased electricity (MWh)

430.88

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

172.71

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

603.59

Guatemala

(7.30.16.1) Consumption of purchased electricity (MWh)

55.2

(7.30.16.2) Consumption of self-generated electricity (MWh)

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

21.63

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

76.83

Hong Kong SAR, China

(7.30.16.1) Consumption of purchased electricity (MWh)

27.2

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

9.47

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

36.67

Hungary

(7.30.16.1) Consumption of purchased electricity (MWh)

248.4

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

97.33

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

345.73

India

(7.30.16.1) Consumption of purchased electricity (MWh)

9649.07

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 9713.95 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 19363.02 Indonesia (7.30.16.1) Consumption of purchased electricity (MWh) 1483.3 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 584.28 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 532.95 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 2600.53 Ireland (7.30.16.1) Consumption of purchased electricity (MWh)

Italy

(7.30.16.1) Consumption of purchased electricity (MWh)

5492.83

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

7846.06

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

13338.89

Kenya

(7.30.16.1) Consumption of purchased electricity (MWh)

416.57

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

338.16

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

754.73

Malaysia

(7.30.16.1) Consumption of purchased electricity (MWh)

27.2

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

9.47

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

36.67

Mexico

(7.30.16.1) Consumption of purchased electricity (MWh)

(7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 778.36 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 2319.42 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 7093.08 Morocco (7.30.16.1) Consumption of purchased electricity (MWh) 393.3 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

154.1

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 547.40 **Netherlands** (7.30.16.1) Consumption of purchased electricity (MWh) 2868.28 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 2037.29 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 4905.57 **New Zealand** (7.30.16.1) Consumption of purchased electricity (MWh) 105.21

(7.30.16.2) Consumption of self-generated electricity (MWh)

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 59 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 164.21 **Nigeria** (7.30.16.1) Consumption of purchased electricity (MWh) 96.6 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 37.85 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 134.45 **Norway**

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

48.02

Peru

(7.30.16.1) Consumption of purchased electricity (MWh)

64.75

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

216.89

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

281.64

Philippines

(7.30.16.1) Consumption of purchased electricity (MWh)

834.9

(7.30.16.2) Consumption of self-generated electricity (MWh)

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

327.12

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

1162.02

Poland

(7.30.16.1) Consumption of purchased electricity (MWh)

1218.07

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

1147.71

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

2365.78

Portugal

(7.30.16.1) Consumption of purchased electricity (MWh)

705.36

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

321.25

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

1026.61

Puerto Rico

(7.30.16.1) Consumption of purchased electricity (MWh)

0

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 0 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 0.00 Republic of Korea (7.30.16.1) Consumption of purchased electricity (MWh) 1092.17 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 2364.56 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 146.13 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 3602.86 Romania (7.30.16.1) Consumption of purchased electricity (MWh)

201.6

Rwanda

(7.30.16.1) Consumption of purchased electricity (MWh)

4.51

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

19.36

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

23.87

Saudi Arabia

(7.30.16.1) Consumption of purchased electricity (MWh)

139.15

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

369.76

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

508.91

Singapore

(7.30.16.1) Consumption of purchased electricity (MWh)

209.21

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

135.18

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

344.39

Slovakia

(7.30.16.1) Consumption of purchased electricity (MWh)

(7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 29.47 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 101.59 **South Africa** (7.30.16.1) Consumption of purchased electricity (MWh) 16832.35 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0

23147.33

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 39979.68 **Spain** (7.30.16.1) Consumption of purchased electricity (MWh) 3329.47 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 0 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 4478.43 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 7807.90 **Sweden** (7.30.16.1) Consumption of purchased electricity (MWh) 3964.91 (7.30.16.2) Consumption of self-generated electricity (MWh)

402

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 1228 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 6374.48 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 11567.39 **Switzerland** (7.30.16.1) Consumption of purchased electricity (MWh) 473 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 65.9 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 538.90

Taiwan, China

(7.30.16.1) Consumption of purchased electricity (MWh)
962.62
(7.30.16.2) Consumption of self-generated electricity (MWh)
o
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
2322.34
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
3284.96
Thailand
(7.30.16.1) Consumption of purchased electricity (MWh)
1035
(7.30.16.2) Consumption of self-generated electricity (MWh)
o
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
o
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

1440.53

Turkey

(7.30.16.1) Consumption of purchased electricity (MWh)

2902.35

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

2624.44

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

5526.79

Uganda

(7.30.16.1) Consumption of purchased electricity (MWh)

1.75

(7.30.16.2) Consumption of self-generated electricity (MWh)

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

7.31

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

9.06

United Arab Emirates

(7.30.16.1) Consumption of purchased electricity (MWh)

156.93

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

61.43

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

218.36

United Kingdom of Great Britain and Northern Ireland

(7.30.16.1) Consumption of purchased electricity (MWh)

19830.22

(7.30.16.2) Consumption of self-generated electricity (MWh)

38173.37

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

194020.31

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

252023.90

United Republic of Tanzania

(7.30.16.1) Consumption of purchased electricity (MWh)

63.42

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 76.8 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 140.22 **United States of America** (7.30.16.1) Consumption of purchased electricity (MWh) 168053.44 (7.30.16.2) Consumption of self-generated electricity (MWh) 0 (7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh) 59252.07 (7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh) 336597 (7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh) 563902.51 **Viet Nam**

(7.30.16.1) Consumption of purchased electricity (MWh)

289.8

(7.30.16.2) Consumption of self-generated electricity (MWh)

0

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

113.55

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

403.35 [Fixed row]

(7.31) Does your organization consume fuels as feedstocks for chemical production activities?

Select from:

✓ No

(7.39) Provide details on your organization's chemical products.

Row 1

(7.39.1) Output product

Select from:

☑ Specialty chemicals

(7.39.2) Production (metric tons)

(7.39.3) Capacity (metric tons)

3239458

(7.39.4) Direct emissions intensity (metric tons CO2e per metric ton of product)

0.1

(7.39.5) Electricity intensity (MWh per metric ton of product)

0.17

(7.39.6) Steam intensity (MWh per metric ton of product)

0.39

(7.39.7) Steam/ heat recovered (MWh per metric ton of product)

0

(7.39.8) Comment

No Comment [Add row]

(7.45) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity metrics that are appropriate to your business operations.

Row 1

(7.45.1) Intensity figure

0.000053

(7.45.2) Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)

(7.45.3) Metric denominator

Select from:

✓ unit total revenue

(7.45.4) Metric denominator: Unit total

7324000000

(7.45.5) Scope 2 figure used

Select from:

✓ Market-based

(7.45.6) % change from previous year

2

(7.45.7) Direction of change

Select from:

✓ Increased

(7.45.8) Reasons for change

Select all that apply

✓ Change in revenue

(7.45.9) Please explain

Very Small change. There has been only 2% change from last year's intensity figure.

Row 2

(7.45.1) Intensity figure

0.188

(7.45.2) Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)

388168

(7.45.3) Metric denominator

Select from:

✓ metric ton of product

(7.45.4) Metric denominator: Unit total

2065698

(7.45.5) Scope 2 figure used

Select from:

✓ Market-based

(7.45.6) % change from previous year

3

(7.45.7) Direction of change

Select from:

Decreased

(7.45.8) Reasons for change

Select all that apply

☑ Change in output

(7.45.9) Please explain

Very Small change. There has been only -3% change from last year's intensity figure. [Add row]

(7.52) Provide any additional climate-related metrics relevant to your business.

Row 1

(7.52.1) Description

Select from:

Waste

(7.52.2) Metric value

49510

(7.52.3) Metric numerator

Total Waste Generated (metric tons)

(7.52.4) Metric denominator (intensity metric only)

N/A

(7.52.5) % change from previous year

36

(7.52.6) Direction of change

Select from:

✓ Increased

(7.52.7) Please explain

The increase in waste was primarily driven by the integration of new facilities following the Diversey acquisition, which expanded our operational footprint. [Add row]

(7.53) Did you have an emissions target that was active in the reporting year?

Select all that apply

✓ Absolute target

(7.53.1) Provide details of your absolute emissions targets and progress made against those targets.

Row 1

(7.53.1.1) Target reference number

Select from:

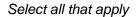
✓ Abs 1

(7.53.1.2) Is this a science-based target?

Select from:

✓ No, but we are reporting another target that is science-based

(7.53.1.5) Date target was set


08/31/2020

(7.53.1.6) Target coverage

Select from:

✓ Organization-wide

(7.53.1.7) Greenhouse gases covered by target

- ✓ Carbon dioxide (CO2)
- ✓ Methane (CH4)
- ✓ Nitrous oxide (N2O)
- ✓ Hydrofluorocarbons (HFCs)

(7.53.1.8) Scopes

Select all that apply

- ✓ Scope 1
- ✓ Scope 2

(7.53.1.9) Scope 2 accounting method

Select from:

✓ Market-based

(7.53.1.11) End date of base year

09/30/2018

(7.53.1.12) Base year Scope 1 emissions covered by target (metric tons CO2e)

169914

(7.53.1.13) Base year Scope 2 emissions covered by target (metric tons CO2e)

135929

(7.53.1.31) Base year total Scope 3 emissions covered by target (metric tons CO2e)

0.000

(7.53.1.32) Total base year emissions covered by target in all selected Scopes (metric tons CO2e)

(7.53.1.33) Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1

100

(7.53.1.34) Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2

100

(7.53.1.53) Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes

100

(7.53.1.54) End date of target

09/30/2030

(7.53.1.55) Targeted reduction from base year (%)

20

(7.53.1.56) Total emissions at end date of target covered by target in all selected Scopes (metric tons CO2e)

244674.400

(7.53.1.57) Scope 1 emissions in reporting year covered by target (metric tons CO2e)

212712

(7.53.1.58) Scope 2 emissions in reporting year covered by target (metric tons CO2e)

175456

(7.53.1.77) Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

(7.53.1.78) Land-related emissions covered by target

Select from:

✓ No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

(7.53.1.79) % of target achieved relative to base year

-134.59

(7.53.1.80) Target status in reporting year

Select from:

New

(7.53.1.82) Explain target coverage and identify any exclusions

The target covers all direct Scope 1 and 2 emissions from our manufacturing operations, offices and vehicles.

(7.53.1.83) Target objective

To reduce total carbon emissions

(7.53.1.84) Plan for achieving target, and progress made to the end of the reporting year

Solenis intends to achieve its targets by prioritizing energy reduction across its manufacturing facilities, increasing the use of renewable electricity, transitioning to electric vehicles (EVs), and investing in energy efficiency projects. These include initiatives such as heat recovery systems, efficient steam generation, and the adoption of more energy-efficient equipment. We are currently working with our energy procurement consultant to develop a comprehensive renewable energy strategy. Given that natural gas consumption—used primarily in our combined heat and power (CHP) plants and for steam generation—constitutes a significant portion of our Scope 1 emissions, we are actively exploring fuel-switching opportunities to further reduce our direct emissions.

(7.53.1.85) Target derived using a sectoral decarbonization approach

Select from:

✓ No

Row 2

(7.53.1.1) Target reference number

Select from:

✓ Abs 2

(7.53.1.2) Is this a science-based target?

Select from:

✓ Yes, we consider this a science-based target, but we have not committed to seek validation of this target by the Science Based Targets initiative within the next two years

(7.53.1.4) Target ambition

Select from:

(7.53.1.5) Date target was set

03/30/2025

(7.53.1.6) Target coverage

Select from:

✓ Organization-wide

(7.53.1.7) Greenhouse gases covered by target

Select all that apply

- ✓ Carbon dioxide (CO2)
- ✓ Methane (CH4)
- ✓ Nitrous oxide (N2O)
- ✓ Hydrofluorocarbons (HFCs)

(7.53.1.8) Scopes

Select all that apply

- ✓ Scope 1
- ✓ Scope 2
- ✓ Scope 3

(7.53.1.9) Scope 2 accounting method

Select from:

✓ Market-based

(7.53.1.10) Scope 3 categories

Select all that apply

- ✓ Scope 3, Category 14 Franchises
- ✓ Scope 3, Category 15 Investments
- ✓ Scope 3, Category 2 Capital goods
- ✓ Scope 3, Category 6 Business travel
- ☑ Scope 3, Category 7 Employee commuting
- ✓ Scope 3, Category 5 Waste generated in operations
- ☑ Scope 3, Category 12 End-of-life treatment of sold products
- ☑ Scope 3, Category 4 Upstream transportation and distribution
- ☑ Scope 3, Category 9 Downstream transportation and distribution
- ☑ Scope 3, Category 3 Fuel- and energy- related activities (not included in Scope 1 or 2)

(7.53.1.11) End date of base year

09/30/2024

(7.53.1.12) Base year Scope 1 emissions covered by target (metric tons CO2e)

- ✓ Scope 3, Category 11 Use of sold products
- ✓ Scope 3, Category 8 Upstream leased assets
- ✓ Scope 3, Category 13 Downstream leased assets
- ✓ Scope 3, Category 1 Purchased goods and services
- ✓ Scope 3, Category 10 Processing of sold products

(7.53.1.13) Base year Scope 2 emissions covered by target (metric tons CO2e)

175455

(7.53.1.14) Base year Scope 3, Category 1: Purchased goods and services emissions covered by target (metric tons CO2e)

5062772

(7.53.1.15) Base year Scope 3, Category 2: Capital goods emissions covered by target (metric tons CO2e)

44980

(7.53.1.16) Base year Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions covered by target (metric tons CO2e)

63853

(7.53.1.17) Base year Scope 3, Category 4: Upstream transportation and distribution emissions covered by target (metric tons CO2e)

426171

(7.53.1.18) Base year Scope 3, Category 5: Waste generated in operations emissions covered by target (metric tons CO2e)

21713

(7.53.1.19) Base year Scope 3, Category 6: Business travel emissions covered by target (metric tons CO2e)

24075

(7.53.1.20) Base year Scope 3, Category 7: Employee commuting emissions covered by target (metric tons CO2e)

12741

(7.53.1.21) Base year Scope 3, Category 8: Upstream leased assets emissions covered by target (metric tons CO2e)

(7.53.1.22) Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target (metric tons CO2e)

7121

(7.53.1.23) Base year Scope 3, Category 10: Processing of sold products emissions covered by target (metric tons CO2e)

1178

(7.53.1.24) Base year Scope 3, Category 11: Use of sold products emissions covered by target (metric tons CO2e)

194512

(7.53.1.25) Base year Scope 3, Category 12: End-of-life treatment of sold products emissions covered by target (metric tons CO2e)

163410

(7.53.1.26) Base year Scope 3, Category 13: Downstream leased assets emissions covered by target (metric tons CO2e)

0

(7.53.1.27) Base year Scope 3, Category 14: Franchises emissions covered by target (metric tons CO2e)

0

(7.53.1.28) Base year Scope 3, Category 15: Investments emissions covered by target (metric tons CO2e)

1049

(7.53.1.31) Base year total Scope 3 emissions covered by target (metric tons CO2e)

6023575.000

(7.53.1.32) Total base year emissions covered by target in all selected Scopes (metric tons CO2e)

6411742.000

(7.53.1.33) Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1

100

(7.53.1.34) Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2

100

(7.53.1.35) Base year Scope 3, Category 1: Purchased goods and services emissions covered by target as % of total base year emissions in Scope 3, Category 1: Purchased goods and services (metric tons CO2e)

100

(7.53.1.36) Base year Scope 3, Category 2: Capital goods emissions covered by target as % of total base year emissions in Scope 3, Category 2: Capital goods (metric tons CO2e)

100

(7.53.1.37) Base year Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions covered by target as % of total base year emissions in Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e)

100

(7.53.1.38) Base year Scope 3, Category 4: Upstream transportation and distribution covered by target as % of total base year emissions in Scope 3, Category 4: Upstream transportation and distribution (metric tons CO2e)

(7.53.1.39) Base year Scope 3, Category 5: Waste generated in operations emissions covered by target as % of total base year emissions in Scope 3, Category 5: Waste generated in operations (metric tons CO2e)

100

(7.53.1.40) Base year Scope 3, Category 6: Business travel emissions covered by target as % of total base year emissions in Scope 3, Category 6: Business travel (metric tons CO2e)

100

(7.53.1.41) Base year Scope 3, Category 7: Employee commuting covered by target as % of total base year emissions in Scope 3, Category 7: Employee commuting (metric tons CO2e)

100

(7.53.1.42) Base year Scope 3, Category 8: Upstream leased assets emissions covered by target as % of total base year emissions in Scope 3, Category 8: Upstream leased assets (metric tons CO2e)

100

(7.53.1.43) Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target as % of total base year emissions in Scope 3, Category 9: Downstream transportation and distribution (metric tons CO2e)

100

(7.53.1.44) Base year Scope 3, Category 10: Processing of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 10: Processing of sold products (metric tons CO2e)

100

(7.53.1.45) Base year Scope 3, Category 11: Use of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 11: Use of sold products (metric tons CO2e)

(7.53.1.46) Base year Scope 3, Category 12: End-of-life treatment of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 12: End-of-life treatment of sold products (metric tons CO2e)

100

(7.53.1.47) Base year Scope 3, Category 13: Downstream leased assets emissions covered by target as % of total base year emissions in Scope 3, Category 13: Downstream leased assets (metric tons CO2e)

100

(7.53.1.48) Base year Scope 3, Category 14: Franchises emissions covered by target as % of total base year emissions in Scope 3, Category 14: Franchises (metric tons CO2e)

100

(7.53.1.49) Base year Scope 3, Category 15: Investments emissions covered by target as % of total base year emissions in Scope 3, Category 15: Investments (metric tons CO2e)

100

(7.53.1.52) Base year total Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)

100

(7.53.1.53) Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes

100

(7.53.1.54) End date of target

09/30/2050

(7.53.1.55) Targeted reduction from base year (%)

100

(7.53.1.56) Total emissions at end date of target covered by target in all selected Scopes (metric tons CO2e)

0.000

(7.53.1.57) Scope 1 emissions in reporting year covered by target (metric tons CO2e)

212712

(7.53.1.58) Scope 2 emissions in reporting year covered by target (metric tons CO2e)

175456

(7.53.1.59) Scope 3, Category 1: Purchased goods and services emissions in reporting year covered by target (metric tons CO2e)

5062772

(7.53.1.60) Scope 3, Category 2: Capital goods emissions in reporting year covered by target (metric tons CO2e)

44980

(7.53.1.61) Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions in reporting year covered by target (metric tons CO2e)

63853

(7.53.1.62) Scope 3, Category 4: Upstream transportation and distribution emissions in reporting year covered by target (metric tons CO2e)

(7.53.1.63) Scope 3, Category 5: Waste generated in operations emissions in reporting year covered by target (metric tons CO2e)

21713

(7.53.1.64) Scope 3, Category 6: Business travel emissions in reporting year covered by target (metric tons CO2e)

24075

(7.53.1.65) Scope 3, Category 7: Employee commuting emissions in reporting year covered by target (metric tons CO2e)

12741

(7.53.1.66) Scope 3, Category 8: Upstream leased assets emissions in reporting year covered by target (metric tons CO2e)

0

(7.53.1.67) Scope 3, Category 9: Downstream transportation and distribution emissions in reporting year covered by target (metric tons CO2e)

7121

(7.53.1.68) Scope 3, Category 10: Processing of sold products emissions in reporting year covered by target (metric tons CO2e)

1178

(7.53.1.69) Scope 3, Category 11: Use of sold products emissions in reporting year covered by target (metric tons CO2e)

194512

(7.53.1.70) Scope 3, Category 12: End-of-life treatment of sold products emissions in reporting year covered by target (metric tons CO2e)

(7.53.1.71) Scope 3, Category 13: Downstream leased assets emissions in reporting year covered by target (metric tons CO2e)

0

(7.53.1.72) Scope 3, Category 14: Franchises emissions in reporting year covered by target (metric tons CO2e)

0

(7.53.1.73) Scope 3, Category 15: Investments emissions in reporting year covered by target (metric tons CO2e)

1049

(7.53.1.76) Total Scope 3 emissions in reporting year covered by target (metric tons CO2e)

6023575.000

(7.53.1.77) Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

6411743.000

(7.53.1.78) Land-related emissions covered by target

Select from:

☑ No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

(7.53.1.79) % of target achieved relative to base year

-0.00

(7.53.1.80) Target status in reporting year

Select from:

✓ New

(7.53.1.82) Explain target coverage and identify any exclusions

The target covers all direct Scope 1 and 2 emissions from our manufacturing operations, offices and vehicles, and all Scope 3 emissions We consider the target Science Based as it aims to acheive Net Zero in our operations by 2050. Solenis is in the process of getting its near term target validated by SBTi. See ABS3 and ABS4

(7.53.1.83) Target objective

Long term net zero target to reduce Scope 1,2&3 emissions

(7.53.1.84) Plan for achieving target, and progress made to the end of the reporting year

This is a new long term target stated in the 2024 Financial Year. In the short term the plan to meet the target is in line with our near term SBTi target stated in ABS3 and ABS4 Short Term reductions in Scope 1&2 will be achieved by energy reduction projects, switching our fleet to electric and hybrid vehicles and by using renewable electricity at our sites. Longer term we will continue our efforts in energy reduction and renewable power and invest in fuel switching projects where economically viable Scope 3 reductions will be achieved mainly through engagement with our supply chain partners, with some switching to renewable and circular raw materials.

(7.53.1.85) Target derived using a sectoral decarbonization approach

Select from:

✓ No

Row 3

(7.53.1.1) Target reference number

Select from:

✓ Abs 3

(7.53.1.2) Is this a science-based target?

Select from:

✓ Yes, we consider this a science-based target, and we have committed to seek validation of this target by the Science Based Targets initiative in the next two years

(7.53.1.4) Target ambition

Select from:

(7.53.1.5) Date target was set

07/28/2025

(7.53.1.6) Target coverage

Select from:

✓ Organization-wide

(7.53.1.7) Greenhouse gases covered by target

Select all that apply

- ✓ Carbon dioxide (CO2)
- ✓ Methane (CH4)
- ✓ Nitrous oxide (N2O)
- ✓ Hydrofluorocarbons (HFCs)

(7.53.1.8) Scopes

Select all that apply

- ✓ Scope 1
- ✓ Scope 2

(7.53.1.9) Scope 2 accounting method

Select from:

✓ Market-based

(7.53.1.11) End date of base year

(7.53.1.12) Base year Scope 1 emissions covered by target (metric tons CO2e)

212712

(7.53.1.13) Base year Scope 2 emissions covered by target (metric tons CO2e)

175455

(7.53.1.31) Base year total Scope 3 emissions covered by target (metric tons CO2e)

0.000

(7.53.1.32) Total base year emissions covered by target in all selected Scopes (metric tons CO2e)

388167.000

(7.53.1.33) Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1

100

(7.53.1.34) Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2

100

(7.53.1.53) Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes

100

(7.53.1.54) End date of target

09/30/2035

(7.53.1.55) Targeted reduction from base year (%)

(7.53.1.56) Total emissions at end date of target covered by target in all selected Scopes (metric tons CO2e)

143621.790

(7.53.1.57) Scope 1 emissions in reporting year covered by target (metric tons CO2e)

212712

(7.53.1.58) Scope 2 emissions in reporting year covered by target (metric tons CO2e)

175456

(7.53.1.77) Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

388168.000

(7.53.1.78) Land-related emissions covered by target

Select from:

✓ No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

(7.53.1.79) % of target achieved relative to base year

-0.00

(7.53.1.80) Target status in reporting year

Select from:

New

(7.53.1.82) Explain target coverage and identify any exclusions

The target covers all direct Scope 1 and 2 emissions from our manufacturing operations, offices and vehicles. We will be submitting this target for validation by SBTi in 2025

(7.53.1.83) Target objective

Near term target Science Based target to reduce Scope 1&2 emissions

(7.53.1.84) Plan for achieving target, and progress made to the end of the reporting year

This is a new near-term target Short Term reductions in Scope 1&2 will be achieved by energy reduction projects, switching our fleet to electric and hybrid vehicles and by using renewable electricity at our sites. Longer term we will continue our efforts in energy reduction and renewable power and invest in fuel switching projects where economically viable

(7.53.1.85) Target derived using a sectoral decarbonization approach

Select from:

✓ No

Row 4

(7.53.1.1) Target reference number

Select from:

✓ Abs 4

(7.53.1.2) Is this a science-based target?

Select from:

✓ Yes, we consider this a science-based target, and we have committed to seek validation of this target by the Science Based Targets initiative in the next two years

(7.53.1.4) Target ambition

Select from:

✓ 2°C aligned

(7.53.1.5) Date target was set

(7.53.1.6) Target coverage

Select from:

✓ Organization-wide

(7.53.1.7) Greenhouse gases covered by target

Select all that apply

- ✓ Carbon dioxide (CO2)
- ✓ Methane (CH4)
- ✓ Nitrous oxide (N2O)

(7.53.1.8) Scopes

Select all that apply

✓ Scope 3

(7.53.1.10) Scope 3 categories

Select all that apply

- ✓ Scope 3, Category 14 Franchises
- ✓ Scope 3, Category 15 Investments
- ✓ Scope 3, Category 2 Capital goods
- ✓ Scope 3, Category 6 Business travel
- ✓ Scope 3, Category 7 Employee commuting
- ✓ Scope 3, Category 5 Waste generated in operations
- ☑ Scope 3, Category 12 End-of-life treatment of sold products
- ☑ Scope 3, Category 4 Upstream transportation and distribution
- ✓ Scope 3, Category 9 Downstream transportation and distribution
- ☑ Scope 3, Category 3 Fuel- and energy- related activities (not included in Scope 1 or 2)

- ✓ Scope 3, Category 11 Use of sold products
- ✓ Scope 3, Category 8 Upstream leased assets
- ☑ Scope 3, Category 13 Downstream leased assets
- ✓ Scope 3, Category 1 Purchased goods and services
- ☑ Scope 3, Category 10 Processing of sold products

(7.53.1.11) End date of base year

09/30/2024

(7.53.1.14) Base year Scope 3, Category 1: Purchased goods and services emissions covered by target (metric tons CO2e)

5062772

(7.53.1.15) Base year Scope 3, Category 2: Capital goods emissions covered by target (metric tons CO2e)

44980

(7.53.1.16) Base year Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions covered by target (metric tons CO2e)

63853

(7.53.1.17) Base year Scope 3, Category 4: Upstream transportation and distribution emissions covered by target (metric tons CO2e)

426171

(7.53.1.18) Base year Scope 3, Category 5: Waste generated in operations emissions covered by target (metric tons CO2e)

21713

(7.53.1.19) Base year Scope 3, Category 6: Business travel emissions covered by target (metric tons CO2e)

24075

(7.53.1.20) Base year Scope 3, Category 7: Employee commuting emissions covered by target (metric tons CO2e)

12741

(7.53.1.21) Base year Scope 3, Category 8: Upstream leased assets emissions covered by target (metric tons CO2e)

(7.53.1.22) Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target (metric tons CO2e)

7121

(7.53.1.23) Base year Scope 3, Category 10: Processing of sold products emissions covered by target (metric tons CO2e)

1178

(7.53.1.24) Base year Scope 3, Category 11: Use of sold products emissions covered by target (metric tons CO2e)

194512

(7.53.1.25) Base year Scope 3, Category 12: End-of-life treatment of sold products emissions covered by target (metric tons CO2e)

163410

(7.53.1.26) Base year Scope 3, Category 13: Downstream leased assets emissions covered by target (metric tons CO2e)

0

(7.53.1.27) Base year Scope 3, Category 14: Franchises emissions covered by target (metric tons CO2e)

0

(7.53.1.28) Base year Scope 3, Category 15: Investments emissions covered by target (metric tons CO2e)

1049

(7.53.1.31) Base year total Scope 3 emissions covered by target (metric tons CO2e)

6023575.000

(7.53.1.32) Total base year emissions covered by target in all selected Scopes (metric tons CO2e)

6023575.000

(7.53.1.35) Base year Scope 3, Category 1: Purchased goods and services emissions covered by target as % of total base year emissions in Scope 3, Category 1: Purchased goods and services (metric tons CO2e)

100

(7.53.1.36) Base year Scope 3, Category 2: Capital goods emissions covered by target as % of total base year emissions in Scope 3, Category 2: Capital goods (metric tons CO2e)

100

(7.53.1.37) Base year Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions covered by target as % of total base year emissions in Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) (metric tons CO2e)

100

(7.53.1.38) Base year Scope 3, Category 4: Upstream transportation and distribution covered by target as % of total base year emissions in Scope 3, Category 4: Upstream transportation and distribution (metric tons CO2e)

100

(7.53.1.39) Base year Scope 3, Category 5: Waste generated in operations emissions covered by target as % of total base year emissions in Scope 3, Category 5: Waste generated in operations (metric tons CO2e)

100

(7.53.1.40) Base year Scope 3, Category 6: Business travel emissions covered by target as % of total base year emissions in Scope 3, Category 6: Business travel (metric tons CO2e)

(7.53.1.41) Base year Scope 3, Category 7: Employee commuting covered by target as % of total base year emissions in Scope 3, Category 7: Employee commuting (metric tons CO2e)

100

(7.53.1.42) Base year Scope 3, Category 8: Upstream leased assets emissions covered by target as % of total base year emissions in Scope 3, Category 8: Upstream leased assets (metric tons CO2e)

100

(7.53.1.43) Base year Scope 3, Category 9: Downstream transportation and distribution emissions covered by target as % of total base year emissions in Scope 3, Category 9: Downstream transportation and distribution (metric tons CO2e)

100

(7.53.1.44) Base year Scope 3, Category 10: Processing of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 10: Processing of sold products (metric tons CO2e)

100

(7.53.1.45) Base year Scope 3, Category 11: Use of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 11: Use of sold products (metric tons CO2e)

100

(7.53.1.46) Base year Scope 3, Category 12: End-of-life treatment of sold products emissions covered by target as % of total base year emissions in Scope 3, Category 12: End-of-life treatment of sold products (metric tons CO2e)

100

(7.53.1.47) Base year Scope 3, Category 13: Downstream leased assets emissions covered by target as % of total base year emissions in Scope 3, Category 13: Downstream leased assets (metric tons CO2e)

(7.53.1.48) Base year Scope 3, Category 14: Franchises emissions covered by target as % of total base year emissions in Scope 3, Category 14: Franchises (metric tons CO2e)

100

(7.53.1.49) Base year Scope 3, Category 15: Investments emissions covered by target as % of total base year emissions in Scope 3, Category 15: Investments (metric tons CO2e)

100

(7.53.1.52) Base year total Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)

100

(7.53.1.53) Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes

100

(7.53.1.54) End date of target

09/30/2035

(7.53.1.55) Targeted reduction from base year (%)

37.5

(7.53.1.56) Total emissions at end date of target covered by target in all selected Scopes (metric tons CO2e)

3764734.375

(7.53.1.59) Scope 3, Category 1: Purchased goods and services emissions in reporting year covered by target (metric tons CO2e)

(7.53.1.60) Scope 3, Category 2: Capital goods emissions in reporting year covered by target (metric tons CO2e)

44980

(7.53.1.61) Scope 3, Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2) emissions in reporting year covered by target (metric tons CO2e)

63853

(7.53.1.62) Scope 3, Category 4: Upstream transportation and distribution emissions in reporting year covered by target (metric tons CO2e)

426171

(7.53.1.63) Scope 3, Category 5: Waste generated in operations emissions in reporting year covered by target (metric tons CO2e)

21713

(7.53.1.64) Scope 3, Category 6: Business travel emissions in reporting year covered by target (metric tons CO2e)

24075

(7.53.1.65) Scope 3, Category 7: Employee commuting emissions in reporting year covered by target (metric tons CO2e)

12741

(7.53.1.66) Scope 3, Category 8: Upstream leased assets emissions in reporting year covered by target (metric tons CO2e)

0

(7.53.1.67) Scope 3, Category 9: Downstream transportation and distribution emissions in reporting year covered by target (metric tons CO2e)

(7.53.1.68) Scope 3, Category 10: Processing of sold products emissions in reporting year covered by target (metric tons CO2e)

1178

(7.53.1.69) Scope 3, Category 11: Use of sold products emissions in reporting year covered by target (metric tons CO2e)

194512

(7.53.1.70) Scope 3, Category 12: End-of-life treatment of sold products emissions in reporting year covered by target (metric tons CO2e)

163410

(7.53.1.71) Scope 3, Category 13: Downstream leased assets emissions in reporting year covered by target (metric tons CO2e)

0

(7.53.1.72) Scope 3, Category 14: Franchises emissions in reporting year covered by target (metric tons CO2e)

0

(7.53.1.73) Scope 3, Category 15: Investments emissions in reporting year covered by target (metric tons CO2e)

1049

(7.53.1.76) Total Scope 3 emissions in reporting year covered by target (metric tons CO2e)

6023575.000

(7.53.1.77) Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

(7.53.1.78) Land-related emissions covered by target

Select from:

☑ No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

(7.53.1.79) % of target achieved relative to base year

0.00

(7.53.1.80) Target status in reporting year

Select from:

New

(7.53.1.82) Explain target coverage and identify any exclusions

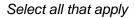
The target covers all Scope 3 emissions from our operations We will be submitting this target for validation by SBTi in 2025

(7.53.1.83) Target objective

Near term target Science Based target to reduce Scope 3 emissions

(7.53.1.84) Plan for achieving target, and progress made to the end of the reporting year

Scope 3 reductions will be achieved mainly through engagement with our supply chain partners, with some switching to renewable and circular raw materials.


(7.53.1.85) Target derived using a sectoral decarbonization approach

Select from:

✓ No

[Add row]

(7.54) Did you have any other climate-related targets that were active in the reporting year?

✓ Net-zero targets

(7.54.3) Provide details of your net-zero target(s).

Row 1

(7.54.3.1) Target reference number

Select from:

✓ NZ1

(7.54.3.2) Date target was set

03/30/2025

(7.54.3.3) Target Coverage

Select from:

✓ Organization-wide

(7.54.3.4) Targets linked to this net zero target

Select all that apply

✓ Abs2

(7.54.3.5) End date of target for achieving net zero

09/30/2050

(7.54.3.6) Is this a science-based target?

Select from:

✓ Yes, we consider this a science-based target, but we have not committed to seek validation of this target by the Science Based Targets initiative within the next two years

(7.54.3.8) Scopes

Select all that apply

- ✓ Scope 1
- ✓ Scope 2
- ✓ Scope 3

(7.54.3.9) Greenhouse gases covered by target

Select all that apply

- ✓ Carbon dioxide (CO2)
- ✓ Methane (CH4)
- ✓ Nitrous oxide (N20)
- ☑ Hydrofluorocarbons (HFCs)

(7.54.3.10) Explain target coverage and identify any exclusions

The target covers all direct Scope 1 and 2 emissions from our manufacturing operations, offices and vehicles, and all Scope 3 emissions We consider the target Science Based as it aims to achieve Net Zero in our operations by 2050. Solenis is in the process of getting its near-term target validated by SBTi. See ABS3 and ABS4

(7.54.3.11) Target objective

Long term net zero target to reduce Scope 1,2&3 emissions

(7.54.3.12) Do you intend to neutralize any residual emissions with permanent carbon removals at the end of the target?

Select from:

Unsure

(7.54.3.13) Do you plan to mitigate emissions beyond your value chain?

Select from:

✓ No, and we do not plan to within the next two years

(7.54.3.17) Target status in reporting year

Select from:

✓ New

(7.54.3.19) Process for reviewing target

Solenis reviews its targets on an annual basis and reports progress via the sustainability report and through CDP [Add row]

(7.55) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.

Select from:

Yes

(7.55.1) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

	Number of initiatives	Total estimated annual CO2e savings in metric tonnes CO2e	
Under investigation	21	`Numeric input	
To be implemented	6	1296	
Implementation commenced	19	1636	
Implemented	20	2701	
Not to be implemented	2	`Numeric input	

[Fixed row]

(7.55.2) Provide details on the initiatives implemented in the reporting year in the table below.

Row 1

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

Cooling technology

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

44

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

20966

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

0

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

Cooling tower saving at our UK site by optimizing the usage to reduce run time

Row 2

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

✓ Electrification

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

1500

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

0

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

✓ 6-10 years

(7.55.2.9) Comment

Reduction in fixed electrical baseload at our UK site

Row 3

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

☑ Heating, Ventilation and Air Conditioning (HVAC)

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

15

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

38915

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

0

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

Installed a new more efficient ventilation system with Heat Recovery Units at our UK site

Row 4

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

☑ Heating, Ventilation and Air Conditioning (HVAC)

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

0.4

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

1938

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

0

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

Turning off heating in unnecessary area following the EU energy directive assessment at our Swedish site.

Row 5

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

☑ Heating, Ventilation and Air Conditioning (HVAC)

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

2

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

9650

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

97

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

Lower temperature at certain warehouses following the EU energy directive assessment at our Swedish site.

Row 6

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

▼ Electrification

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

20

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

0

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

✓ 6-10 years

(7.55.2.9) Comment

Switch to lithium battery from lead battery forklift at our UK site.

Row 7

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

✓ Insulation

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

2

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

2421

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

14528

(7.55.2.7) Payback period

Select from:

(7.55.2.8) Estimated lifetime of the initiative

Select from:

✓ >30 years

(7.55.2.9) Comment

Adding insulation on the roof during repair at our Swedish site

Row 8

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

✓ Maintenance program

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

11

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 1

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

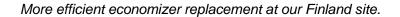
(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

40912

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

80329

(7.55.2.7) Payback period


Select from:

✓ 1-3 years

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

Row 9

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

✓ Maintenance program

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

8

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 1

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

4529

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

0

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

3-5 years

✓ 3-5 years

✓ 3-5 years

✓ 3-6 years

✓ 3-7 years

✓ 3-7 years

✓ 3-7 years

✓ 3-8 years

(7.55.2.9) Comment

Repair steam traps at our UK site

Row 11

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

Lighting

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

11

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

176507

(7.55.2.7) Payback period

Select from:

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

Switch to LED lighting at our Swedish site

Row 12

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

✓ Motors and drives

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

40

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

6084

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

0

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

Ongoing

(7.55.2.9) Comment

Turning off make up agitator when not used to save electricity at our UK site

Row 13

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

✓ Waste heat recovery

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

14

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 1

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

8331

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

5209

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

Repair ste	am traps	at our	UK site
------------	----------	--------	---------

Row 14

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

✓ Waste heat recovery

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

15

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 1

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

8776

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

3256

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

3-5 years

✓ 3-5 years

✓ 3-5 years

✓ 3-6 years

✓ 3-7 years

✓ 3-7 years

✓ 3-7 years

✓ 3-8 years

(7.55.2.9) Comment

Repair steam traps at our UK site

Row 15

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

✓ Maintenance program

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

8

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 1

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

0

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

Ongoing

(7.55.2.9) Comment

Turning off heating calorifiers in the summer when unnecessary at our UK site

Row 16

(7.55.2.1) Initiative category & Initiative type

Non-energy industrial process emissions reductions

✓ Process equipment replacement

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

9

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

14187

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

0

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

Energy savings by no longer using the solvent flush on Balco pump seals that requires the use of steam at our UK site.

Row 17

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in buildings

✓ Maintenance program

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

15

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 1

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

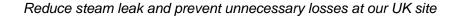
(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

31430

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

0

(7.55.2.7) Payback period


Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

Row 18

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

✓ Process optimization

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

51

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

10652

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

0

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

Optimization of heat exchangers in operation at our UK site

Row 19

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

✓ Process optimization

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

85

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

0

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

Optimize steam use at our UK site.

Row 20

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

✓ Waste heat recovery

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

850

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (market-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

154355

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

0

(7.55.2.7) Payback period

Select from:

✓ <1 year
</p>

(7.55.2.8) Estimated lifetime of the initiative

Select from:

(7.55.2.9) Comment

Condensate return line upgraded to reduce the energy usage for reheating the water at our UK site

Row 21

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

☑ Electrification

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

1

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 1

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

8332

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

81221

(7.55.2.7) Payback period

Select from:

(7.55.2.8) Estimated lifetime of the initiative

Select from:

✓ 21-30 years

(7.55.2.9) Comment

New Resin transformers replacing obsolete oil-filled transformers at our Italy site. [Add row]

(7.55.3) What methods do you use to drive investment in emissions reduction activities?

Row 1

(7.55.3.1) Method

Select from:

☑ Employee engagement

(7.55.3.2) Comment

Our sites have local improvement initiatives, where employees are encouraged to generate energy savings ideas. In many sites, improvements are also linked to performance targets.

Row 2

(7.55.3.1) Method

Select from:

✓ Partnering with governments on technology development

(7.55.3.2) Comment

The Bradford site has worked with the UK Government to develop a net zero roadmap. This work was completed as part of the Industry of the Future program

Row 3

(7.55.3.1) Method

Select from:

☑ Compliance with regulatory requirements/standards

(7.55.3.2) Comment

The Enschede site is investing in LED, Heat recovery, and other energy saving projects to comply with the Dutch Energy Efficiency Directive.

Row 4

(7.55.3.1) Method

Select from:

✓ Lower return on investment (ROI) specification

(7.55.3.2) Comment

Energy saving projects that reduces emissions have a longer payback period compared to Corporate ROI policy. [Add row]

(7.73) Are you providing product level data for your organization's goods or services?

Select from:

✓ No, I am not providing data

(7.74) Do you classify any of your existing goods and/or services as low-carbon products?

Select from:

Yes

(7.74.1) Provide details of your products and/or services that you classify as low-carbon products.

Row 1

(7.74.1.1) Level of aggregation

Select from:

☑ Group of products or services

(7.74.1.2) Taxonomy used to classify product(s) or service(s) as low-carbon

Select from:

✓ No taxonomy used to classify product(s) or service(s) as low carbon

(7.74.1.3) Type of product(s) or service(s)

Chemicals and plastics

☑ Other, please specify :Water treatment chemicals

(7.74.1.4) Description of product(s) or service(s)

Dry strength additives that enhance the end-use performance of tissue and towel grades and improve the operating efficiency of tissue machines.

(7.74.1.5) Have you estimated the avoided emissions of this low-carbon product(s) or service(s)

Select from:

Yes

(7.74.1.6) Methodology used to calculate avoided emissions

Select from:

☑ Other, please specify :Solenis Value Advantage

(7.74.1.7) Life cycle stage(s) covered for the low-carbon product(s) or services(s)

Select from:

✓ Use stage

(7.74.1.8) Functional unit used

Tissue machine operating at 450m2/hour

(7.74.1.9) Reference product/service or baseline scenario used

Operation of tissue machine before use of dry strength additive

(7.74.1.10) Life cycle stage(s) covered for the reference product/service or baseline scenario

Select from:

(7.74.1.11) Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario

6

(7.74.1.12) Explain your calculation of avoided emissions, including any assumptions

Dry strength additives reduce the amount of fiber required to make paper, resulting in lower pulp requirements and therefore less energy. The energy is converted to a CO2e emissions reduction by using the standard fuel mix per industry (24% Natural Gas, 6% Coal, 70% biomass). It is assumed that the pulp mill operates at 90% availability.

(7.74.1.13) Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

1.3

Row 3

(7.74.1.1) Level of aggregation

Select from:

☑ Group of products or services

(7.74.1.2) Taxonomy used to classify product(s) or service(s) as low-carbon

Select from:

✓ No taxonomy used to classify product(s) or service(s) as low carbon

(7.74.1.3) Type of product(s) or service(s)

Chemicals and plastics

☑ Other, please specify :Water treatment chemicals

(7.74.1.4) Description of product(s) or service(s)

Our defoamer products reduce water consumption in paper making resulting in a reduction in the energy required in the process.

(7.74.1.5) Have you estimated the avoided emissions of this low-carbon product(s) or service(s)

Select from:

✓ Yes

(7.74.1.6) Methodology used to calculate avoided emissions

Select from:

☑ Other, please specify :Solenis Value Advantage calculator

(7.74.1.7) Life cycle stage(s) covered for the low-carbon product(s) or services(s)

Select from:

✓ Use stage

(7.74.1.8) Functional unit used

Typical 1000ton/day pulp mill operating for 1 year

(7.74.1.9) Reference product/service or baseline scenario used

Pulp mill operating without defoamer

(7.74.1.10) Life cycle stage(s) covered for the reference product/service or baseline scenario

Select from:

✓ Use stage

(7.74.1.11) Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario

46000

(7.74.1.12) Explain your calculation of avoided emissions, including any assumptions

Without the use of defoamers additional water is required or pulp processing. This calculation is based on the avoided emissions for evaporating the additional water using the average fuel mix of US paper mills (24% Natural Gas, 6% Coal, 70% biomass). It is assumed that the pulp mill operates at 90% availability.

(7.74.1.13) Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year

0.6 [Add row]

(7.79) Has your organization retired any project-based carbon credits within the reporting year?

Select from:

✓ No

C8. Environmental performance - Forests

(8.1) Are there any exclusions from your disclosure of forests-related data?

	Exclusion from disclosure
Timber products	Select from: ✓ Yes
Palm oil	Select from: ✓ Yes
Soy	Select from: ✓ Yes
Rubber	Select from: ✓ Yes

[Fixed row]

(8.1.1) Provide details on these exclusions.

Timber products

(8.1.1.1) Exclusion

Select from:

☑ Other, please specify :Non EUDR HS codes have been excluded

(8.1.1.2) Description of exclusion

In order to improve data collection accuracy and process, we have adopted: - HS codes reported on Annex 1of Regulation on Deforestation-free Products (EUDR) and collected data at global level, excluding packaging HS codes - for packaging volume we have used data provided by Packaging Working Group, operating at Solenis Global level

(8.1.1.3) Value chain stage

Select from:

✓ Upstream value chain

(8.1.1.4) Reason for exclusion

Select from:

☑ Challenges associated with traceability

(8.1.1.8) Indicate if you are providing the commodity volume that is being excluded from your disclosure of forestsrelated data

Select from:

✓ No, the volume excluded is unknown

(8.1.1.10) Please explain

In order to improve data collection accuracy and process, we have adopted HS codes reported on Annex 1 of Regulation on Deforestation-free Products (EUDR) and collected data at global level, any other HS code not reported in EUDR is excluded

Palm oil

(8.1.1.1) Exclusion

Select from:

☑ Other, please specify :Non EUDR HS codes have been excluded

(8.1.1.2) Description of exclusion

In order to improve data collection accuracy and process, we have adopted HS codes reported on Annex 1of Regulation on Deforestation-free Products (EUDR) and collected data at global level, any other HS code not reported in EUDR is excluded

(8.1.1.3) Value chain stage

Select from:

✓ Upstream value chain

(8.1.1.4) Reason for exclusion

Select from:

☑ Challenges associated with traceability

(8.1.1.8) Indicate if you are providing the commodity volume that is being excluded from your disclosure of forestsrelated data

Select from:

✓ No, the volume excluded is unknown

(8.1.1.10) Please explain

In order to improve data collection accuracy and process, we have adopted HS codes reported on Annex 1of Regulation on Deforestation-free Products (EUDR) and collected data at global level, any other HS code not reported in EUDR is excluded

Soy

(8.1.1.1) Exclusion

Select from:

☑ Other, please specify :Only HS codes reported in EUDR Annex 1

(8.1.1.2) Description of exclusion

In order to improve data collection accuracy and process, we have adopted HS codes reported on Annex 1of Regulation on Deforestation-free Products (EUDR) and collected data at global level, any other HS code not reported in EUDR is excluded

(8.1.1.3) Value chain stage

Select from:

✓ Upstream value chain

(8.1.1.4) Reason for exclusion

Select from:

☑ Challenges associated with traceability

(8.1.1.8) Indicate if you are providing the commodity volume that is being excluded from your disclosure of forestsrelated data

Select from:

✓ No, the volume excluded is unknown

(8.1.1.10) Please explain

In order to improve data collection accuracy and process, we have adopted HS codes reported on Annex 1of Regulation on Deforestation-free Products (EUDR) and collected data at global level, any other HS code not reported in EUDR is excluded

Rubber

(8.1.1.1) Exclusion

Select from:

☑ Other, please specify :Non EUDR HS codes have been excluded

(8.1.1.2) Description of exclusion

In order to improve data collection accuracy and process, we have adopted HS codes reported on Annex 1of Regulation on Deforestation-free Products (EUDR) and collected data at global level, any other HS code not reported in EUDR is excluded

(8.1.1.3) Value chain stage

Select from:

✓ Upstream value chain

(8.1.1.4) Reason for exclusion

Select from:

☑ Challenges associated with traceability

(8.1.1.8) Indicate if you are providing the commodity volume that is being excluded from your disclosure of forestsrelated data

Select from:

✓ No, the volume excluded is unknown

(8.1.1.10) Please explain

In order to improve data collection accuracy and process, we have adopted HS codes reported on Annex 1of Regulation on Deforestation-free Products (EUDR) and collected data at global level, any other HS code not reported in EUDR is excluded [Add row]

(8.2) Provide a breakdown of your disclosure volume per commodity.

	Disclosure volume (metric tons)	Volume type	Sourced volume (metric tons)
Timber products	36081	Select all that apply ✓ Sourced	36081
Palm oil	10490	Select all that apply ✓ Sourced	10490

	Disclosure volume (metric tons)	Volume type	Sourced volume (metric tons)
Soy	336	Select all that apply ✓ Sourced	336
Rubber	33	Select all that apply ✓ Sourced	33

[Fixed row]

(8.2.1) Provide details on any soy embedded in animal products sourced by your organization.

	Disclosure of embedded soy	Description of embedded soy use and soy tiers
Soy	Select from: ✓ All of our embedded soy volume is excluded from our disclosure as reported in 8.1.1	We do not have any significant volume of animal products, so we do not track embedded soy

[Fixed row]

(8.5) Provide details on the origins of your sourced volumes.

Timber products

(8.5.1) Country/area of origin

Select from:

✓ Unknown origin

(8.5.4) Volume sourced from country/area of origin (metric tons)

36081

(8.5.5) Source

Select all that apply

☑ Contracted suppliers (manufacturers)

(8.5.7) Please explain

We are not currently tracking the origin of the material at Corporate level

Palm oil

(8.5.1) Country/area of origin

Select from:

✓ Unknown origin

(8.5.4) Volume sourced from country/area of origin (metric tons)

10490

(8.5.5) Source

Select all that apply

✓ Contracted suppliers (manufacturers)

(8.5.7) Please explain

Main countries of origin are Malaysia and Indonesia, but we do not have full visibility into our suppliers supply chain, some suppliers are not providing identity-preserved (a higher level of certification) products that could be traced to a particular grower.

Soy

(8.5.1) Country/area of origin

Select from:

✓ Unknown origin

(8.5.4) Volume sourced from country/area of origin (metric tons)

336

(8.5.5) Source

Select all that apply

☑ Contracted suppliers (manufacturers)

(8.5.7) Please explain

We are not currently tracking the origin of the material at Corporate level

Rubber

(8.5.1) Country/area of origin

Select from:

✓ Unknown origin

(8.5.4) Volume sourced from country/area of origin (metric tons)

33

(8.5.5) Source

Select all that apply

☑ Contracted suppliers (manufacturers)

(8.5.7) Please explain

We are not currently tracking the origin of the material at Corporate level [Add row]

(8.6) Does your organization produce or source palm oil derived biofuel?

Select from:

✓ No

(8.7) Did your organization have a no-deforestation or no-conversion target, or any other targets for sustainable production/ sourcing of your disclosed commodities, active in the reporting year?

Timber products

(8.7.1) Active no-deforestation or no-conversion target

Select from:

☑ No, but we plan to have a no-deforestation or no-conversion target in the next two years

(8.7.3) Primary reason for not having an active no-deforestation or no-conversion target in the reporting year

Select from:

✓ No standardized procedure

(8.7.4) Explain why you did not have an active no-deforestation or no-conversion target in the reporting year

Our deforestation policy is available in our regulatory library. https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/deforestation-and-biodiversity.pdf In 2024, Solenis significantly enhanced its approach to biodiversity and deforestation. This started with the development of Deforestation and Biodiversity policy. From there Solenis is actively exploring ways to integrate biodiversity and deforestation consideration into our operations and supply chain. These efforts include moving towards deforestation free sourcing and grant compliance with EU Deforestation Regulation (EUDR) requirements by January 2026

(8.7.5) Other active targets related to this commodity, including any which contribute to your no-deforestation or noconversion target

Select from:

☑ No, but we plan to have other targets related to this commodity in the next two years

(8.7.6) Primary reason for not having other active targets in the reporting year

Select from:

✓ No standardized procedure

(8.7.7) Explain why you did not have other active targets in the reporting year

As part of Solenis commitment to sustainability and the fight against deforestation, the company is transitioning towards more responsible sourcing practices. In line with this objective, we are actively working to ensure compliance with the EU Regulation on Deforestation-free Products (Regulation (EU) 2023/1115 – EUDR), which sets obligations for operators and traders placing or exporting deforestation-related commodities on the EU market. Our deforestation policy is available in our regulatory library. https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/deforestation-and-biodiversity.pdf

Palm oil

(8.7.1) Active no-deforestation or no-conversion target

Select from:

☑ No, but we plan to have a no-deforestation or no-conversion target in the next two years

(8.7.3) Primary reason for not having an active no-deforestation or no-conversion target in the reporting year

Select from:

✓ No standardized procedure

(8.7.4) Explain why you did not have an active no-deforestation or no-conversion target in the reporting year

Our deforestation policy is available in our regulatory library. https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/deforestation-and-biodiversity.pdf In 2024, Solenis significantly enhanced its approach to biodiversity and deforestation. This started with the development of Deforestation and Biodiversity policy. From there Solenis is actively exploring ways to integrate biodiversity and deforestation consideration into our operations and supply chain. These efforts include moving towards deforestation free sourcing and grant compliance with EU Deforestation Regulation (EUDR) requirements by January 2026

(8.7.5) Other active targets related to this commodity, including any which contribute to your no-deforestation or noconversion target

Select from:

✓ No, but we plan to have other targets related to this commodity in the next two years

(8.7.6) Primary reason for not having other active targets in the reporting year

Select from:

✓ No standardized procedure

(8.7.7) Explain why you did not have other active targets in the reporting year

As part of Solenis commitment to sustainability and the fight against deforestation, the company is transitioning towards more responsible sourcing practices. In line with this objective, we are actively working to ensure compliance with the EU Regulation on Deforestation-free Products (Regulation (EU) 2023/1115 – EUDR), which sets obligations for operators and traders placing or exporting deforestation-related commodities on the EU market. Our deforestation policy is available in our regulatory library. https://www.solenis.com/globalassets/resources/sustainability-regulatory-library/deforestation-and-biodiversity.pdf

Soy

(8.7.1) Active no-deforestation or no-conversion target

Select from:

☑ No, but we plan to have a no-deforestation or no-conversion target in the next two years

(8.7.3) Primary reason for not having an active no-deforestation or no-conversion target in the reporting year

Select from:

✓ No standardized procedure

(8.7.4) Explain why you did not have an active no-deforestation or no-conversion target in the reporting year

Our deforestation policy is available in our regulatory library. https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/deforestation-and-biodiversity.pdf In 2024, Solenis significantly enhanced its approach to biodiversity and deforestation. This started with the development of Deforestation and Biodiversity policy. From there Solenis is actively exploring ways to integrate biodiversity and deforestation consideration into our operations and supply chain. These efforts include moving towards deforestation free sourcing and grant compliance with EU Deforestation Regulation (EUDR) requirements by January 2026

(8.7.5) Other active targets related to this commodity, including any which contribute to your no-deforestation or noconversion target

Select from:

✓ No, but we plan to have other targets related to this commodity in the next two years

(8.7.6) Primary reason for not having other active targets in the reporting year

Select from:

✓ No standardized procedure

(8.7.7) Explain why you did not have other active targets in the reporting year

As part of Solenis commitment to sustainability and the fight against deforestation, the company is transitioning towards more responsible sourcing practices. In line with this objective, we are actively working to ensure compliance with the EU Regulation on Deforestation-free Products (Regulation (EU) 2023/1115 – EUDR), which sets obligations for operators and traders placing or exporting deforestation-related commodities on the EU market. Our deforestation policy is available in our regulatory library. https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/deforestation-and-biodiversity.pdf

Rubber

(8.7.1) Active no-deforestation or no-conversion target

Select from:

☑ No, but we plan to have a no-deforestation or no-conversion target in the next two years

(8.7.3) Primary reason for not having an active no-deforestation or no-conversion target in the reporting year

Select from:

✓ No standardized procedure

(8.7.4) Explain why you did not have an active no-deforestation or no-conversion target in the reporting year

Our deforestation policy is available in our regulatory library. https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/deforestation-and-biodiversity.pdf In 2024, Solenis significantly enhanced its approach to biodiversity and deforestation. This started with the development of Deforestation and

Biodiversity policy. From there Solenis is actively exploring ways to integrate biodiversity and deforestation consideration into our operations and supply chain. These efforts include moving towards deforestation free sourcing and grant compliance with EU Deforestation Regulation (EUDR) requirements by January 2026

(8.7.5) Other active targets related to this commodity, including any which contribute to your no-deforestation or noconversion target

Select from:

✓ No, but we plan to have other targets related to this commodity in the next two years

(8.7.6) Primary reason for not having other active targets in the reporting year

Select from:

✓ No standardized procedure

(8.7.7) Explain why you did not have other active targets in the reporting year

As part of Solenis commitment to sustainability and the fight against deforestation, the company is transitioning towards more responsible sourcing practices. In line with this objective, we are actively working to ensure compliance with the EU Regulation on Deforestation-free Products (Regulation (EU) 2023/1115 – EUDR), which sets obligations for operators and traders placing or exporting deforestation-related commodities on the EU market. Our deforestation policy is available in our regulatory library. https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/deforestation-and-biodiversity.pdf [Fixed row]

(8.8) Indicate if your organization has a traceability system to determine the origins of your sourced volumes and provide details of the methods and tools used.

Timber products

(8.8.1) Traceability system

Select from:

☑ No, but we plan to establish one within the next two years

(8.8.4) Primary reason your organization does not have a traceability system

Select from:

✓ No standardized procedure

(8.8.5) Explain why your organization does not have a traceability system

Solenis is implementing Osapiens, which will improve traceability

Palm oil

(8.8.1) Traceability system

Select from:

✓ No, but we plan to establish one within the next two years

(8.8.4) Primary reason your organization does not have a traceability system

Select from:

✓ No standardized procedure

(8.8.5) Explain why your organization does not have a traceability system

Solenis has a protocol implemented to ensure that all the supplier information is gathered. Among this information, there is a mandatory document named VRR (Vendor Regulatory Request) filled by the supplier to ensure that supplier fulfills the required specifications. Solenis is implementing Osapiens, which will improve traceability

Soy

(8.8.1) Traceability system

Select from:

✓ No, but we plan to establish one within the next two years

(8.8.4) Primary reason your organization does not have a traceability system

Select from:

✓ No standardized procedure

(8.8.5) Explain why your organization does not have a traceability system

Solenis is implementing Osapiens, which will improve traceability

Rubber

(8.8.1) Traceability system

Select from:

☑ No, but we plan to establish one within the next two years

(8.8.4) Primary reason your organization does not have a traceability system

Select from:

✓ No standardized procedure

(8.8.5) Explain why your organization does not have a traceability system

Solenis is implementing Osapiens, which will improve traceability [Fixed row]

(8.9) Provide details of your organization's assessment of the deforestation-free (DF) or deforestation- and conversion-free (DCF) status of its disclosed commodities.

Timber products

(8.9.1) DF/DCF status assessed for this commodity

Select from:

✓ No, but we plan to do so within the next two years

(8.9.6) Is a proportion of your disclosure volume certified through a scheme not providing full DF/DCF assurance?

✓ No

(8.9.7) Primary reason for not assessing DF/DCF status

Select from:

✓ No standardized procedure

(8.9.8) Explain why you have not assessed DF/DCF status

As part of Solenis commitment to sustainability and the fight against deforestation, the company is transitioning towards more responsible sourcing practices. In line with this objective, we are actively working to ensure compliance with the EU Regulation on Deforestation-free Products (Regulation (EU) 2023/1115 – EUDR), which sets obligations for operators and traders placing or exporting deforestation-related commodities on the EU market. Our deforestation policy is available in our regulatory library. https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/deforestation-and-biodiversity.pdf

Palm oil

(8.9.1) DF/DCF status assessed for this commodity

Select from:

✓ No, but we plan to do so within the next two years

(8.9.6) Is a proportion of your disclosure volume certified through a scheme not providing full DF/DCF assurance?

Select from:

✓ No

(8.9.7) Primary reason for not assessing DF/DCF status

Select from:

✓ No standardized procedure

(8.9.8) Explain why you have not assessed DF/DCF status

As part of Solenis commitment to sustainability and the fight against deforestation, the company is transitioning towards more responsible sourcing practices. In line with this objective, we are actively working to ensure compliance with the EU Regulation on Deforestation-free Products (Regulation (EU) 2023/1115 – EUDR), which sets obligations for operators and traders placing or exporting deforestation-related commodities on the EU market. Our deforestation policy is available in our regulatory library. https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/deforestation-and-biodiversity.pdf

Soy

(8.9.1) DF/DCF status assessed for this commodity

Select from:

✓ No, but we plan to do so within the next two years

(8.9.6) Is a proportion of your disclosure volume certified through a scheme not providing full DF/DCF assurance?

Select from:

✓ No

(8.9.7) Primary reason for not assessing DF/DCF status

Select from:

✓ No standardized procedure

(8.9.8) Explain why you have not assessed DF/DCF status

As part of Solenis commitment to sustainability and the fight against deforestation, the company is transitioning towards more responsible sourcing practices. In line with this objective, we are actively working to ensure compliance with the EU Regulation on Deforestation-free Products (Regulation (EU) 2023/1115 – EUDR), which sets obligations for operators and traders placing or exporting deforestation-related commodities on the EU market. Our deforestation policy is available in our regulatory library. https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/deforestation-and-biodiversity.pdf

Rubber

(8.9.1) DF/DCF status assessed for this commodity

Select from:

☑ No, but we plan to do so within the next two years

(8.9.6) Is a proportion of your disclosure volume certified through a scheme not providing full DF/DCF assurance?

Select from:

✓ No

(8.9.7) Primary reason for not assessing DF/DCF status

Select from:

✓ No standardized procedure

(8.9.8) Explain why you have not assessed DF/DCF status

As part of Solenis commitment to sustainability and the fight against deforestation, the company is transitioning towards more responsible sourcing practices. In line with this objective, we are actively working to ensure compliance with the EU Regulation on Deforestation-free Products (Regulation (EU) 2023/1115 – EUDR), which sets obligations for operators and traders placing or exporting deforestation-related commodities on the EU market. Our deforestation policy is available in our regulatory library. https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/deforestation-and-biodiversity.pdf
[Fixed row]

(8.10) Indicate whether you have monitored or estimated the deforestation and conversion of other natural ecosystems footprint for your disclosed commodities.

	Monitoring or estimating your deforestation and conversion footprint	Primary reason for not monitoring or estimating deforestation and conversion footprint	Explain why you do not monitor or estimate your deforestation and conversion footprint
Timber products	Select from: ✓ No, and we do not plan to monitor or estimate our deforestation and conversion footprint in the next two years	Select from: ✓ No standardized procedure	Solenis is committed to source deforestation free products and working to grant compliance to EU Deforestation Regulation by January 2026

	Monitoring or estimating your deforestation and conversion footprint	Primary reason for not monitoring or estimating deforestation and conversion footprint	Explain why you do not monitor or estimate your deforestation and conversion footprint
Palm oil	Select from: ✓ No, and we do not plan to monitor or estimate our deforestation and conversion footprint in the next two years	Select from: ✓ No standardized procedure	Solenis is committed to source deforestation free products and working to grant compliance to EU Deforestation Regulation by January 2026
Soy	Select from: ☑ No, and we do not plan to monitor or estimate our deforestation and conversion footprint in the next two years	Select from: ✓ No standardized procedure	Solenis is committed to source deforestation free products and working to grant compliance to EU Deforestation Regulation by January 2026
Rubber	Select from: ✓ No, and we do not plan to monitor or estimate our deforestation and conversion footprint in the next two years	Select from: ✓ No standardized procedure	Solenis is committed to source deforestation free products and working to grant compliance to EU Deforestation Regulation by January 2026

[Fixed row]

(8.11) For volumes not assessed and determined as deforestation- and conversion-free (DCF), indicate if you have taken actions in the reporting year to increase production or sourcing of DCF volumes.

	Actions taken to increase production or sourcing of DCF volumes
Timber products	Select from: ✓ Yes
Palm oil	Select from:

	Actions taken to increase production or sourcing of DCF volumes
	✓ Yes
Soy	Select from: ✓ Yes
Rubber	Select from: ✓ Yes

[Fixed row]

(8.11.1) Provide details of actions taken in the reporting year to assess and increase production/sourcing of deforestation- and conversion-free (DCF) volumes.

Timber products

(8.11.1.1) Action type

Select from:

✓ Increasing traceability

(8.11.1.2) % of disclosure volume that is covered by this action

100

(8.11.1.3) Indicate whether you had any major barriers or challenges related to this action in the reporting year

Select from:

Yes

(8.11.1.4) Main measures identified to manage or resolve the challenges

Select all that apply

- ✓ Greater transparency
- ☑ Greater customer awareness
- ☑ Greater enforcement of regulations
- ☑ Greater supplier awareness/engagement
- ✓ Improvement in data collection and quality
- ✓ Investment in monitoring tools and traceability systems
- ✓ Increased knowledge on commodity driven deforestation, forest degradation and/or conversion

(8.11.1.5) Provide further details on the actions taken, their contribution to achieving DCF status, and any related barriers or challenges

In 2024 we issued our Deforestation and biodiversity Policy. This lays out our commitment to prevent deforestation, conversion of native vegetation, and minimizing our impact on nature and the ecosystems in which operate within and near. We are implementing an IT solution to improve our data collection and reporting in this area.

Palm oil

(8.11.1.1) Action type

Select from:

✓ Increasing traceability

(8.11.1.2) % of disclosure volume that is covered by this action

100

(8.11.1.3) Indicate whether you had any major barriers or challenges related to this action in the reporting year

Select from:

✓ Yes

(8.11.1.4) Main measures identified to manage or resolve the challenges

Select all that apply

- ☑ Greater transparency
- ☑ Greater supplier awareness/engagement
- ✓ Increased demand for certified products
- ☑ Improvement in data collection and quality
- ☑ Greater stakeholder engagement and collaboration
- ✓ Investment in monitoring tools and traceability systems
- ✓ Increased knowledge on commodity driven deforestation, forest degradation and/or conversion

(8.11.1.5) Provide further details on the actions taken, their contribution to achieving DCF status, and any related barriers or challenges

In 2024 we issued our Deforestation and biodiversity Policy. This lays out our commitment to prevent deforestation, conversion of native vegetation, and minimizing our impact on nature and the ecosystems in which operate within and near. This policy outlines our procurement strategy to select suppliers that have signed the Sustainable Pam Oil Roundtable (RSPO) code of conduct. (https://rspo.org/wp-content/uploads/CoC.pdf) Same requirement is included in Solenis Supplier Code of Conduct. We are implementing an IT solution to improve our data collection and reporting in this area.

Soy

(8.11.1.1) Action type

Select from:

✓ Increasing traceability

(8.11.1.2) % of disclosure volume that is covered by this action

100

(8.11.1.3) Indicate whether you had any major barriers or challenges related to this action in the reporting year

Select from:

✓ Yes

(8.11.1.4) Main measures identified to manage or resolve the challenges

Select all that apply

- ☑ Greater transparency
- ✓ Greater customer awareness
- ☑ Greater enforcement of regulations
- ☑ Greater supplier awareness/engagement
- ✓ Investment in monitoring tools and traceability systems
- ✓ Increased knowledge on commodity driven deforestation, forest degradation and/or conversion

(8.11.1.5) Provide further details on the actions taken, their contribution to achieving DCF status, and any related barriers or challenges

In 2024 we issued our Deforestation and biodiversity Policy. This lays out our commitment to prevent deforestation, conversion of native vegetation, and minimizing our impact on nature and the ecosystems in which operate within and near. We are implementing an IT solution to improve our data collection and reporting in this area.

Rubber

(8.11.1.1) Action type

Select from:

✓ Increasing traceability

(8.11.1.2) % of disclosure volume that is covered by this action

100

(8.11.1.3) Indicate whether you had any major barriers or challenges related to this action in the reporting year

Select from:

Yes

(8.11.1.4) Main measures identified to manage or resolve the challenges

Select all that apply

- ☑ Greater transparency
- ☑ Greater customer awareness
- ☑ Greater enforcement of regulations
- ☑ Greater supplier awareness/engagement
- ✓ Improvement in data collection and quality
- ☑ Greater stakeholder engagement and collaboration
- ✓ Investment in monitoring tools and traceability systems
- ☑ Increased knowledge on commodity driven deforestation, forest degradation and/or conversion

(8.11.1.5) Provide further details on the actions taken, their contribution to achieving DCF status, and any related barriers or challenges

In 2024 we issued our Deforestation and biodiversity Policy. This lays out our commitment to prevent deforestation, conversion of native vegetation, and minimizing our impact on nature and the ecosystems in which operate within and near. We are implementing an IT solution to improve our data collection and reporting in this area.

[Add row]

(8.12) Indicate if certification details are available for the commodity volumes sold to requesting CDP Supply Chain members.

Timber products

(8.12.1) Third-party certification scheme adopted

Select from:

☑ No, and we do not plan to adopt third-party certification within the next two years

(8.12.5) Primary reason that third-party certification has not been adopted

Select from:

✓ Not an immediate strategic priority

(8.12.6) Explain why third-party certification has not been adopted

Solenis collects FSC certifications from suppliers for specific products, the process is not yet fully structured. We will get third party assurance within Osapiens for EUDR scope from January 2026

Palm oil

(8.12.1) Third-party certification scheme adopted

Select from:

Yes

(8.12.2) Certification details are available for the volumes sold to any requesting CDP Supply Chain members

Select from:

✓ No

(8.12.3) Primary reason certification details are not available for the volumes sold to any requesting CDP Supply Chain members

Select from:

✓ Insufficient data on what is sold to requesting member

(8.12.4) Explain why certification details are not available for the volumes sold to any requesting CDP Supply Chain members

Some certification is available for specific products where we use a mass balance approach to determine the certified palm oil source. We are developing processes to create full traceability of certified palm oil.

Soy

(8.12.1) Third-party certification scheme adopted

Select from:

☑ No, and we do not plan to adopt third-party certification within the next two years

(8.12.5) Primary reason that third-party certification has not been adopted

Select from:

✓ Not an immediate strategic priority

(8.12.6) Explain why third-party certification has not been adopted

Not yet a priority initiative for Solenis, we will get third party assurance within Osapiens for EUDR scope from January 2026

Rubber

(8.12.1) Third-party certification scheme adopted

Select from:

☑ No, and we do not plan to adopt third-party certification within the next two years

(8.12.5) Primary reason that third-party certification has not been adopted

Select from:

✓ Not an immediate strategic priority

(8.12.6) Explain why third-party certification has not been adopted

Not yet a priority initiative for Solenis, we will get third party assurance within Osapiens for EUDR scope from January 2026 [Fixed row]

(8.13) Does your organization calculate the GHG emission reductions and/or removals from land use management and land use change that have occurred in your direct operations and/or upstream value chain?

	GHG emissions reductions and removals from land use management and land use change calculated	Primary reason your organization does not calculate GHG emissions reductions and removals from land use management and land use change	Explain why your organization does not calculate GHG emissions reductions and removals from land use management and land use change
Timber products	Select from: ✓ No, and do not plan to do so in the next two years	Select from: ✓ Not an immediate strategic priority	This is not a significant area for Solenis
Palm oil	Select from: ✓ No, and do not plan to do so in the next two years	Select from: ✓ Not an immediate strategic priority	This is not a significant area for Solenis
Soy	Select from: ✓ No, and do not plan to do so in the next two years	Select from: ✓ Not an immediate strategic priority	This is not a significant area for Solenis
Rubber	Select from: ✓ No, and do not plan to do so in the next two years	Select from: ✓ Not an immediate strategic priority	This is not a significant area for Solenis

[Fixed row]

(8.14) Indicate if you assess your own compliance and/or the compliance of your suppliers with forest regulations and/or mandatory standards, and provide details.

(8.14.1) Assess legal compliance with forest regulations

Select from:

✓ Yes, from suppliers

(8.14.2) Aspects of legislation considered

Select all that apply

☑ Environmental protection

- ✓ Labor rights
- ✓ Human rights protected under international law
- ☑ Tax, anti-corruption, trade and customs regulations

(8.14.3) Procedure to ensure legal compliance

Select all that apply

☑ Other, please specify :Code of Conduct and Contract requirements

(8.14.5) Please explain

Suppliers are requested to acknowledge Solenis Supplier Code of Conduct (https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/supplier-code-of-conduct-v8.pdf) and align with Solenis Deforestation and Biodiversity Policy (https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/deforestation-and-biodiversity.pdf)
[Fixed row]

(8.15) Do you engage in landscape (including jurisdictional) initiatives to progress shared sustainable land use goals?

(8.15.1) Engagement in landscape/jurisdictional initiatives

Select from:

☑ No, we do not engage in landscape/jurisdictional initiatives, and we do not plan to within the next two years

(8.15.2) Primary reason for not engaging in landscape/jurisdictional initiatives

Select from:

✓ Not an immediate strategic priority

(8.15.3) Explain why your organization does not engage in landscape/jurisdictional initiatives

This is not a significant area for Solenis [Fixed row]

(8.16) Do you participate in any other external activities to support the implementation of policies and commitments related to deforestation, ecosystem conversion, or human rights issues in commodity value chains?

Select from:

Yes

(8.16.1) Provide details of the external activities to support the implementation of your policies and commitments related to deforestation, ecosystem conversion, or human rights issues in commodity value chains

Row 1

(8.16.1.1) Commodity

Select all that apply

✓ Palm oil

(8.16.1.2) Activities

Select all that apply

✓ Involved in industry platforms

(8.16.1.3) Country/area

Select from:

✓ Worldwide

(8.16.1.4) Subnational area

Select from:

✓ Not applicable

(8.16.1.5) Provide further details of the activity

Solenis participates with a variety of industry groups that are advancing sustainable forest products. For instance, we have many products that are certified by organizations such as Nordic Swan, EU Ecolabel, and Cradle-to-Cradle, which require any palm kernel oil derivatives to be certified sustainable. We engage with these organizations on industry standards to ensure we are following best practices to prevent deforestation in our supply chain. We are also members of trade groups that share best practices and establish industry standards for product stewardship. Solenis is also an active member of Responsible Care, which helps reinforce our product sustainability goals.

[Add row]

(8.17) Is your organization supporting or implementing project(s) focused on ecosystem restoration and long-term protection?

Select from:

☑ No, but we plan to implement a project(s) within the next two years

- **C9. Environmental performance Water security**
- (9.1) Are there any exclusions from your disclosure of water-related data?

✓ No

(9.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

Water withdrawals - total volumes

(9.2.1) % of sites/facilities/operations

Select from:

100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Solenis calculates total water withdrawal as the sum of all facility-level withdrawals from various sources. Sites that receive water from third parties typically obtain withdrawal data from supplier invoices, while sites that withdraw water from wells or surface sources record volumes using on-site meters

(9.2.4) Please explain

Solenis facilities report water withdrawals by source into a centralized database, where the data is aggregated to determine our total water withdrawal, which is then verified by a third party and reported in our annual sustainability report.

Water withdrawals - volumes by source

(9.2.1) % of sites/facilities/operations

Select from:

✓ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Solenis facilities report water withdrawals by source. Most sites obtain water from third-party suppliers, with withdrawal volumes recorded from supplier invoices. Several sites withdraw water directly from wells or surface sources, and the majority of these rely on on-site meter readings to track usage.

(9.2.4) Please explain

Solenis facilities report water withdrawals by source into a centralized data base where data can then analyzed and processed through our annual third party verification process.

Water withdrawals quality

(9.2.1) % of sites/facilities/operations

Select from:

✓ Not monitored

(9.2.4) Please explain

Solenis do not routinely monitor water withdrawal quality, as water sources used in our operations are suitable for their intended industrial purposes without additional potability treatment.

Water discharges - total volumes

(9.2.1) % of sites/facilities/operations

100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Solenis calculates total water discharge as the sum of all facility-level discharges by source. Data is collected using on-site meter readings or invoicing records.

(9.2.4) Please explain

Solenis facilities report water discharge by destination into a centralized database, where the data is aggregated to determine our total water discharge, which is then verified by a third party and reported in our annual sustainability report.

Water discharges - volumes by destination

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Solenis facilities report water discharges by destination, with data collection methods varying by site. All sites track discharge volumes using either invoicing data or on-site meter readings.

(9.2.4) Please explain

Solenis facilities report water discharge by destination into a centralized data base where data can then analyzed and processed through our annual third party verification process

Water discharges - volumes by treatment method

(9.2.1) % of sites/facilities/operations

Select from:

76-99

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Solenis can track some water discharge volumes by treatment methods. Facility collect data based on invoicing; however, some sites rely on local meter readings.

(9.2.4) Please explain

Solenis currently reports the volume of wastewater sent to third parties for primary and secondary treatment, as well as wastewater discharged to surface water following pH adjustment and neutralization, based on facility-level reporting into our centralized database.

Water discharge quality – by standard effluent parameters

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

✓ Other, please specify: Varies per site

(9.2.3) Method of measurement

Solenis measures and reports standard effluent parameters including biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), pH, temperature, nutrients and relevant inorganic substances at applicable manufacturing facilities. Testing is performed using certified third-party laboratories or qualified on-site personnel and each site maintains the quality data for their waste streams.

(9.2.4) Please explain

We monitor water discharge quality at our manufacturing facilities to ensure compliance with the local laws and regulations and to protect downstream water quality. Although rare, any noncompliance with our permits is reported under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EH&S) Management System's EIC (Environmental Incident Classification) process. Quality testing per site can range from pH or temperature measurements, up to BOD, COD, TOC, TSS, or inorganic substances testing. Some sites have continuous monitoring discharge systems while others may test in batches or rely on third party wastewater treatment systems since pollutants are so minimal. To support our corporate sustainability goals, all sites complete an annual EHS survey that documents pollutants found in waste streams. This EHS survey, combined with mapping all facilities into the WRI Aqueduct tool, helps identify and guide investment in site-level water quality improvements.

Water discharge quality – emissions to water (nitrates, phosphates, pesticides, and/or other priority substances)

(9.2.1) % of sites/facilities/operations

Select from:

✓ 26-50

(9.2.2) Frequency of measurement

Select from:

☑ Other, please specify :Varies per site

(9.2.3) Method of measurement

Solenis measures nitrates and phosphates at applicable manufacturing facilities. Most sites rely on certified third-party laboratories to conduct testing and the results regarding the quality of water are maintained at the site level.

(9.2.4) Please explain

We monitor water discharge quality at our manufacturing facilities to ensure compliance with the local laws and regulations and to protect downstream water quality. Although rare, any noncompliance with our permits is reported under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EH&S) Management System's EIC (Environmental Incident Classification) process. Quality testing per site varies based on site specific pollutants that can be generated in waste streams. Therefore, only a portion of our facilities are required to monitor nitrates and phosphates. To support our corporate sustainability goals, all sites complete an annual EHS survey that documents pollutants found in waste streams. This EHS survey, combined with mapping all facilities into the WRI Aqueduct tool, helps identify and guide investment in site-level water quality improvements.

Water discharge quality – temperature

(9.2.1) % of sites/facilities/operations

Select from:

26-50

(9.2.2) Frequency of measurement

Select from:

✓ Other, please specify: Varies per site

(9.2.3) Method of measurement

Solenis measures and reports water discharge temperature at applicable manufacturing facilities. Testing is performed using certified third-party laboratories or qualified on-site personnel and each site maintains the quality data for their waste streams.

(9.2.4) Please explain

We monitor water discharge quality at our manufacturing facilities to ensure compliance with the local laws and regulations and to protect downstream water quality. Although rare, any noncompliance with our permits is reported under our ISO 14001 and RC14001-certified Environmental, Health, & Safety (EH&S) Management System's EIC (Environmental Incident Classification) process. Quality testing per site varies based on site specific pollutants that can be generated in waste streams. Therefore, only a portion of our facilities are required to waste water temperature discharge. To support our corporate sustainability goals, all sites complete an annual EHS survey that documents pollutants found in waste streams. This EHS survey, combined with mapping all facilities into the WRI Aqueduct tool, helps identify and guide investment in site-level water quality improvements.

Water consumption - total volume

(9.2.1) % of sites/facilities/operations

100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Solenis calculates total water consumption as the difference between total water withdrawals and total water discharges.

(9.2.4) Please explain

Solenis total water consumption reported is third party verified and published in our annual sustainability report.

Water recycled/reused

(9.2.1) % of sites/facilities/operations

Select from:

✓ Not monitored

(9.2.4) Please explain

Current some sites do recycle/reuse water, however, we do not have instrumentation at the site level to quantify the amounts of recycled/reused water.

The provision of fully-functioning, safely managed WASH services to all workers

(9.2.1) % of sites/facilities/operations

Select from:

☑ 76-99

(9.2.2) Frequency of measurement

Yearly

(9.2.3) Method of measurement

Annual EHS Survey filled out by site personnel

(9.2.4) Please explain

Currently, sites conduct self-assessments to determine compliance with WASH requirements. To strengthen assurance, we are evaluating the integration of WASH compliance checks into our three-year Environmental, Health & Safety (EHS) audit cycle. This will provide an additional layer of verification and help ensure all facilities consistently meet WASH standards.

[Fixed row]

(9.2.2) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reporting year, and how are they forecasted to change?

Total withdrawals

(9.2.2.1) Volume (megaliters/year)

7886

(9.2.2.2) Comparison with previous reporting year

Select from:

✓ About the same

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Investment in water-smart technology/process

(9.2.2.4) Five-year forecast

✓ Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Investment in water-smart technology/process

(9.2.2.6) Please explain

We measure and monitor water withdrawals across 100% of our manufacturing sites in alignment with the GRI Standards under our certified Environmental, Health & Safety (EHS) Management System (ISO 14001 and RC14001). In 2024, total water withdrawals decreased by 3.1%, from 8,142 megaliters to 7,886 megaliters. This change is considered "about the same" as the previous year, as it falls within our ±5% variance threshold. The reduction was primarily driven by site-level water-saving projects, including upgrades to process equipment, transitioning from single-pass to closed-loop cooling systems, and other localized efforts to optimize water use. To support continuous improvement, North America has established a Water Reduction Team focused on identifying and implementing water-saving initiatives at the site level. The APAC region is in the early stages of forming a similar team, with the goal of establishing regional teams globally to scale best practices. This structure enables collaboration, knowledge sharing, and alignment with corporate water stewardship goals. Solenis has set a target to reduce process water intensity by 10% by 2035, using 2023 as the baseline year. To ensure credibility and transparency, the total water withdrawal data is externally verified by a third-party (ERM), as disclosed in our 2024 Sustainability Report. We continue to evaluate opportunities to expand verification to other water metrics in future reporting cycles. Looking ahead, we expect steady reductions in water withdrawals driven by continued investment in water-smart technologies and enhanced internal governance.

Total discharges

(9.2.2.1) Volume (megaliters/year)

4975

(9.2.2.2) Comparison with previous reporting year

Select from:

✓ About the same

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.2.4) Five-year forecast

Select from:

✓ Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Investment in water-smart technology/process

(9.2.2.6) Please explain

We measure and monitor water discharges across 100% of our manufacturing sites in alignment with the GRI Standards under our certified Environmental, Health & Safety (EHS) Management System (ISO 14001 and RC14001). In 2024, total water discharges increased by 1%, from 4928 megaliters to 4975 megaliters. This change is considered "about the same" as the previous year, as it falls within our ±5% variance threshold. This minor increase was primarily driven by increased production volumes at certain facilities, which resulted in higher process water use and corresponding discharge. Despite this, Solenis remains committed to minimizing its water footprint through targeted site-level improvements. Process optimization projects, such as recirculating water systems and enhanced reuse strategies, are expected to drive reductions in discharge volumes over time. To ensure credibility and transparency, the total water discharge data is externally verified by a third-party (ERM), as disclosed in our 2024 Sustainability Report. We continue to evaluate opportunities to expand verification to other water metrics in future reporting cycles. Looking ahead, we expect steady reductions in water discharges driven by continued investment in water-smart technologies and enhanced internal governance.

Total consumption

(9.2.2.1) Volume (megaliters/year)

2911

(9.2.2.2) Comparison with previous reporting year

Select from:

✓ Lower

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Investment in water-smart technology/process

(9.2.2.4) Five-year forecast

Select from:

✓ Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Investment in water-smart technology/process

(9.2.2.6) Please explain

We measure and monitor water consumption across 100% of our sites in alignment with the GRI Standards, under our certified Environmental, Health & Safety (EHS) Management System (ISO 14001 and RC14001). Total water consumption is calculated as our total water withdrawal minus total water discharge. In 2024, total water consumption decreased by 9.4%, from 3,214 megaliters to 2,911 megaliters. We categorize this change as "lower" than the prior year, as it falls outside our defined ±5% threshold. The reduction was primarily driven by site-level water-saving projects, including upgrades to process equipment, transitioning from single-pass to closed-loop cooling systems, and other localized efforts to optimize water use. To support continuous improvement, North America has established a Water Reduction Team focused on identifying and implementing water-saving initiatives at the site level. The APAC region is in the early stages of forming a similar team, with the goal of establishing regional teams globally to scale best practices. This structure enables collaboration, knowledge sharing, and alignment with corporate water stewardship goals. Solenis has set a target to reduce water intensity by 10% by 2035, using 2023 as the baseline year. To ensure credibility and transparency, the total water consumption data is externally verified by a third-party (ERM), as disclosed in our 2024 Sustainability Report. We continue to evaluate opportunities to expand verification to other water metrics in future reporting cycles. Looking ahead, we expect steady reductions in water withdrawals driven by continued investment in water-smart technologies and enhanced internal governance.

[Fixed row]

(9.2.4) Indicate whether water is withdrawn from areas with water stress, provide the volume, how it compares with the previous reporting year, and how it is forecasted to change.

(9.2.4.1) Withdrawals are from areas with water stress

Select from:

✓ Yes

(9.2.4.2) Volume withdrawn from areas with water stress (megaliters)

1155

(9.2.4.3) Comparison with previous reporting year

Select from:

✓ About the same

(9.2.4.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in efficiency

(9.2.4.5) Five-year forecast

Select from:

✓ Lower

(9.2.4.6) Primary reason for forecast

Select from:

✓ Investment in water-smart technology/process

(9.2.4.7) % of total withdrawals that are withdrawn from areas with water stress

14.65

(9.2.4.8) Identification tool

Select all that apply

✓ WRI Aqueduct

(9.2.4.9) Please explain

Solenis conducts an annual water risk assessment to identify facilities that may operate within water stress regions, both near and long-term using the WRI aqueduct tool. In alignment with GRI standards, Solenis defines water stress as areas designated as having ""high"" or ""extremely high"" baseline water stress according to WRI Aqueduct tool. The scope of the metrics includes 100% of our facilities and of these facilities approximately 14.7% fall within water stress areas. The total water withdrawal compared to 2023 shows approximately a 3% decrease. This change is considered "about the same" as the previous year, as it falls within our ±5% variance threshold. This decrease is primarily due to water conservation efforts and water saving projects that improved our water efficiency such as recycling water usage within operations. To ensure steady progress is made toward water conservation efforts, Solenis has set a target to reduce process water intensity by 10% by 2035, using 2023 as the baseline year. To ensure credibility and transparency, the full list of sites in Water Stress region and its total water withdrawal is disclosed in our 2024 Sustainability Report. Looking ahead, we expect steady reductions in water withdrawals driven by continued investment in water-smart technologies and enhanced internal governance.

[Fixed row]

(9.2.7) Provide total water withdrawal data by source.

Fresh surface water, including rainwater, water from wetlands, rivers, and lakes

(9.2.7.1) Relevance

Select from:

✓ Relevant

(9.2.7.2) Volume (megaliters/year)

867

(9.2.7.3) Comparison with previous reporting year

Select from:

✓ About the same

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.7.5) Please explain

Solenis considers fresh surface water withdrawals in 2024 to be "about the same" as the prior year, as year-over-year changes remained within our internal ±5% variance threshold. While overall company water withdrawals decreased, these reductions did not significantly impact total fresh surface water use. The minor fluctuations observed are from increased production rates at certain facilities.

Brackish surface water/Seawater

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

No Brackish surface water

Groundwater - renewable

(9.2.7.1) Relevance

Select from:

Relevant

(9.2.7.2) Volume (megaliters/year)

1814

(9.2.7.3) Comparison with previous reporting year

Select from:

✓ Lower

(9.2.7.4) Primary reason for comparison with previous reporting year

✓ Investment in water-smart technology/process

(9.2.7.5) Please explain

Solenis considers fresh renewable groundwater withdrawals in 2024 to represent a "decrease" compared to the prior year, as year-over-year changes fell outside our internal ±5% variance threshold. While total company water withdrawals declined overall, the most significant reductions occurred at sites that rely on groundwater as their primary source. These decreases were primarily driven by site-level water reduction initiatives.

Groundwater – non-renewable

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

No non-renewable groundwater

Produced/Entrained water

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

No produced/entrained water

Third party sources

(9.2.7.1) Relevance

✓ Relevant

(9.2.7.2) Volume (megaliters/year)

5205

(9.2.7.3) Comparison with previous reporting year

Select from:

✓ About the same

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Investment in water-smart technology/process

(9.2.7.5) Please explain

Solenis considers water withdrawals from third-party sources in 2024 to be "about the same" as the prior year, as year-over-year changes remained within our internal ±5% variance threshold. Following the acquisition of Diversey, whose operations predominantly rely on third-party water, we observed a slight reduction in overall usage. This decrease, despite the company's growth in size, is attributed to site-level water-saving initiatives, including process equipment upgrades, conversion from single-pass to closed-loop cooling systems, and other localized efficiency projects driven by our dedicated water reduction team.

[Fixed row]

(9.2.8) Provide total water discharge data by destination.

Fresh surface water

(9.2.8.1) Relevance

Select from:

✓ Relevant

(9.2.8.2) Volume (megaliters/year)

2868

(9.2.8.3) Comparison with previous reporting year

Select from:

✓ About the same

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

✓ Other, please specify :Increase/decrease in business activity & Investment in water-smart technology/process

(9.2.8.5) Please explain

Solenis considers water discharges to fresh surface water in 2024 to be "about the same" as the prior year, as year-over-year changes remained within our internal ±5% variance threshold. At some facilities, water reduction efforts reduced groundwater withdrawals, which in turn lowered wastewater discharges to surface water. Conversely, other sites experienced higher production rates that increased water withdrawals and, subsequently, discharge volumes. These offsetting changes resulted in total water discharges to fresh surface water remaining consistent with the previous year.

Brackish surface water/seawater

(9.2.8.1) Relevance

Select from:

✓ Not relevant

(9.2.8.5) Please explain

No Brackish surface water

Groundwater

(9.2.8.1) Relevance

✓ Not relevant

(9.2.8.5) Please explain

No groundwater discharge

Third-party destinations

(9.2.8.1) Relevance

Select from:

✓ Relevant

(9.2.8.2) Volume (megaliters/year)

2107

(9.2.8.3) Comparison with previous reporting year

Select from:

✓ About the same

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

☑ Other, please specify :Increase/decrease in business activity, Investment in water-smart technology/process, & Mergers and acquisitions

(9.2.8.5) Please explain

Solenis considers water discharges to third parties in 2024 to be "about the same" as the prior year, as year-over-year changes remained within our internal ±5% variance threshold. Some facilities experienced decreases in third-party water withdrawals due to water reduction efforts, leading to reduced wastewater discharges, while others saw higher production rates that required increased water use and, consequently, higher discharge volumes. Additionally, the integration of Diversey operations, which rely more heavily on third-party water sources, contributed to an overall increase in third-party water withdrawals and associated discharges. These offsetting factors resulted in total water discharges to a third party to remain about the same as in the previous year.

[Fixed row]

(9.2.9) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

Tertiary treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Not relevant

(9.2.9.6) Please explain

Solenis doesn't conduct this level of waste treatment

Secondary treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

Relevant

(9.2.9.2) Volume (megaliters/year)

1593

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

☑ This is our first year of measurement

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

☑ Other, please specify: This is our first year reporting

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

☑ 71-80

(9.2.9.6) Please explain

This data reflects the total volume of water discharged from our facilities to local POTWs, where it typically undergoes both primary and secondary treatment. As part of our commitment to advancing water stewardship, Solenis is working to enhance our understanding of downstream treatment processes to further improve our management of wastewater impacts.

Primary treatment only

(9.2.9.1) Relevance of treatment level to discharge

Select from:

Relevant

(9.2.9.2) Volume (megaliters/year)

1514

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

☑ This is our first year of measurement

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

☑ Other, please specify: This is our first year reporting

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

(9.2.9.6) Please explain

Solenis tracks and reports the total volume of wastewater discharged to surface water. Currently, the amount reported for primary treatment is the only amount we can currently confirm that receives primary treatment prior to release. Although we suspect that all site's wastewater discharge to surface water undergoes primary treatment, we have added questions to our annual EHS survey to confirm this and to strengthen our understanding of the specific site level treatment methods. This effort will improve alignment with CDP treatment categories and further advance our wastewater management practices.

Discharge to the natural environment without treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Relevant

(9.2.9.2) Volume (megaliters/year)

1354

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

✓ This is our first year of measurement

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

☑ Other, please specify: This is our first year reporting

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

☑ 1-10

(9.2.9.6) Please explain

We know the volume of total wastewater discharge sent to surface water and we assume all sites perform primary treatment to waste water effluents or there is no impact to the environment. We are in the process of confirming through our annual EHS survey. Until we can confirm site level treatment methods, we have decided to take a cautious approach by reporting a portion of sites as discharging to the environment without treatment. Upon closing this gap in data reporting, it will strengthen our understanding of the specific site level treatment methods. This effort will improve alignment with CDP treatment categories and further advance our wastewater management practices.

Discharge to a third party without treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Relevant

(9.2.9.2) Volume (megaliters/year)

514

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

☑ This is our first year of measurement

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

☑ Other, please specify :This is our first year reporting

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

☑ 1-10

(9.2.9.6) Please explain

Currently, only a small percentage of Solenis sites discharge wastewater to a third party without treatment. In these limited cases, the sites are located within shared industrial complexes and send wastewater to a neighboring facility within the complex, where it undergoes appropriate treatment prior to final discharge

Other

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Not relevant

(9.2.9.6) Please explain

Solenis doesn't any other waste treatment methods. [Fixed row]

(9.2.10) Provide details of your organization's emissions of nitrates, phosphates, pesticides, and other priority substances to water in the reporting year.

(9.2.10.2) Categories of substances included

Select all that apply

✓ Nitrates

Phosphates

(9.2.10.4) Please explain

Currently, Solenis does not report consolidated emissions data for nitrates, phosphates, pesticides, or other priority substances at the corporate level. These parameters are monitored and recorded at the facility level in accordance with local permits and regulatory requirements, but the information is not yet aggregated centrally. We are actively working to develop a standardized corporate reporting process that will enable us to collect, consolidate, and disclose this data consistently across all sites in future reporting cycles. This initiative is part of our broader effort to strengthen water stewardship, enhance data transparency, and align with evolving stakeholder expectations.

[Fixed row]

(9.3) In your direct operations and upstream value chain, what is the number of facilities where you have identified substantive water-related dependencies, impacts, risks, and opportunities?

Direct operations

(9.3.1) Identification of facilities in the value chain stage

Select from:

✓ Yes, we have assessed this value chain stage and identified facilities with water-related dependencies, impacts, risks, and opportunities

(9.3.2) Total number of facilities identified

19

(9.3.3) % of facilities in direct operations that this represents

Select from:

26-50

(9.3.4) Please explain

Solenis operates 19 sites that are located in areas with high or extremely high water stress as determined by the World Resources Institute's "Aqueduct Water Risk Atlas":

Upstream value chain

(9.3.1) Identification of facilities in the value chain stage

Select from:

☑ No, we have not assessed this value chain stage for facilities with water-related dependencies, impacts, risks, and opportunities, but we are planning to do so in the next 2 years

(9.3.4) Please explain

We are planning to assess water related risks in our upstream value chain

(9.3.1) For each facility referenced in 9.3, provide coordinates, water accounting data, and a comparison with the previous reporting year.

Row 1

(9.3.1.1) Facility reference number

Select from:

✓ Facility 1

(9.3.1.2) Facility name (optional)

Facility 1

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

✓ Narmada

(9.3.1.8) Latitude

21.6265

(9.3.1.9) Longitude

73.015213

(9.3.1.10) Located in area with water stress

Select from:

Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)

79.25

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

Higher

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

(9.3.1.16) Withdrawals from brackish surface water/seawater

0

(9.3.1.17) Withdrawals from groundwater - renewable

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water

0

(9.3.1.20) Withdrawals from third party sources

79248

(9.3.1.21) Total water discharges at this facility (megaliters)

58.36

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

(9.3.1.27) Total water consumption at this facility (megaliters)

20.89

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Lower

(9.3.1.29) Please explain

Site in India in Water Stress Region

Row 2

(9.3.1.1) Facility reference number

Select from:

✓ Facility 2

(9.3.1.2) Facility name (optional)

Facility 2

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

(9.3.1.5) Withdrawals or discharges in the reporting year Select from: ✓ Yes, withdrawals and discharges (9.3.1.7) Country/Area & River basin Canada ✓ St. Lawrence (9.3.1.8) Latitude 43.334723 (9.3.1.9) Longitude -79.816534 (9.3.1.10) Located in area with water stress Select from: Yes (9.3.1.13) Total water withdrawals at this facility (megaliters) 59.54 (9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

✓ About the same

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

(9.3.1.16) Withdrawals from brackish surface water/seawater

0

(9.3.1.17) Withdrawals from groundwater - renewable

0

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water

0

(9.3.1.20) Withdrawals from third party sources

59544

(9.3.1.21) Total water discharges at this facility (megaliters)

47.93

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

✓ About the same

(9.3.1.23) Discharges to fresh surface water

n

(9.3.1.24) Discharges to brackish surface water/seawater

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

47926

(9.3.1.27) Total water consumption at this facility (megaliters)

11.62

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

(9.3.1.29) Please explain

Site in Canada in Water Stress Region

Row 3

(9.3.1.1) Facility reference number

Select from:

✓ Facility 3

(9.3.1.2) Facility name (optional)

Facility 3

(9.3.1.3) Value chain stage

Sel	lect	from:
0 <i>CI</i>	ひしょ	II OIII.

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Spain

✓ Other, please specify :Tagus

(9.3.1.8) Latitude

40.207084

(9.3.1.9) Longitude

-3.677671

(9.3.1.10) Located in area with water stress

Select from:

Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)

32.4

(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ About the same
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
32404
(9.3.1.21) Total water discharges at this facility (megaliters)
4.66
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from:

✓ About the same (9.3.1.23) Discharges to fresh surface water (9.3.1.24) Discharges to brackish surface water/seawater 0 (9.3.1.25) Discharges to groundwater 0 (9.3.1.26) Discharges to third party destinations 4660.68 (9.3.1.27) Total water consumption at this facility (megaliters) 27.74

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Lower

(9.3.1.29) Please explain

Site in Spain in Water Stress Region

Row 4

(9.3.1.1) Facility reference number

Select from:

✓ Facility 4

(9.3.1.2) Facility name (optional)

Facility 4

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

United States of America

☑ Other, please specify :Gulf of Mexico, North Atlantic coast

(9.3.1.8) Latitude

36.651805

(9.3.1.9) Longitude

-76.99879

(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
525.51
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable
525505.69
(9.3.1.19) Withdrawals from produced/entrained water
o
(9.3.1.20) Withdrawals from third party sources

(9.3.1.21) Total water discharges at this facility (megaliters	(9.3.1)	.21) Tota	l water dischai	raes at this fac	cility (megaliters)
--	---------	-----------	-----------------	------------------	---------------------

555.23

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

✓ Lower

(9.3.1.23) Discharges to fresh surface water

555228.22

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

0

(9.3.1.27) Total water consumption at this facility (megaliters)

-29.72

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Much lower

(9.3.1.29) Please explain

Site in the US in Water Stress Region. The negative water consumption could be due to rainwater or runoff in the wastewater system.

Row 5

(9.3.1.1) Facility reference number

Select from:

✓ Facility 5

(9.3.1.2) Facility name (optional)

Facility 5

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Turkey

☑ Other, please specify :Black Sea, South Coast

(9.3.1.8) Latitude
40.801299
(9.3.1.9) Longitude
29.491227
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
59.93
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
o
(9.3.1.16) Withdrawals from brackish surface water/seawater
o
(9.3.1.17) Withdrawals from groundwater - renewable
0

(9.3.1.18) Withdrawals from groundwater - non-renewable

(9.3.1.19) Withdrawals from produced/entrained water

0

(9.3.1.20) Withdrawals from third party sources

59933

(9.3.1.21) Total water discharges at this facility (megaliters)

34.05

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

34049

(9.3.1.27) Total water consumption at this facility (megaliters)

	α	1 00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-61-	101 00			. ماهند.				
П	9.3	エフ8) Com	DaldSon	OT TO	гаі со	nsumi	orion	WITH	previous	s reno		Vear
N	7.0 .	1.20	<i>,</i>	parioon	01 60	tai oo		361011		piction	JICPU	9	Jour

Select from:

✓ Lower

(9.3.1.29) Please explain

Site in Turkey in Water Stress Region

Row 6

(9.3.1.1) Facility reference number

Select from:

✓ Facility 6

(9.3.1.2) Facility name (optional)

Facility 6

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

✓ Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges
(9.3.1.7) Country/Area & River basin
United States of America ☑ Other, please specify :Gulf of Mexico, North Atlantic coast
(9.3.1.8) Latitude
36.047491
(9.3.1.9) Longitude
-79.789092
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
33.44
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
o
(9.3.1.16) Withdrawals from brackish surface water/seawater

(9.3.1.17) Withdrawals from groundwater - renewable

0

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water

0

(9.3.1.20) Withdrawals from third party sources

33439.26

(9.3.1.21) Total water discharges at this facility (megaliters)

41.08

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

✓ Lower

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

n

(9.3.1.25) Discharges to groundwater

(9.3.1.26) Discharges to third party destinations

41076.68

(9.3.1.27) Total water consumption at this facility (megaliters)

-7.64

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much lower

(9.3.1.29) Please explain

Site in the US in Water Stress Region. The negative water consumption could be due to rainwater or runoff in the wastewater system.

Row 7

(9.3.1.1) Facility reference number

Select from:

✓ Facility 7

(9.3.1.2) Facility name (optional)

Facility 7

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility Select all that apply Risks (9.3.1.5) Withdrawals or discharges in the reporting year Select from: ✓ Yes, withdrawals and discharges (9.3.1.7) Country/Area & River basin United States of America ✓ Mississippi River (9.3.1.8) Latitude 39.862659 (9.3.1.9) Longitude -104.883395 (9.3.1.10) Located in area with water stress Select from: Yes (9.3.1.13) Total water withdrawals at this facility (megaliters) 10.72

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from: ✓ About the same
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
10721.45
(9.3.1.21) Total water discharges at this facility (megaliters)
6.05
(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:
✓ Lower

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

6049.56

(9.3.1.27) Total water consumption at this facility (megaliters)

4.67

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

☑ Higher

(9.3.1.29) Please explain

Site in the US in Water Stress Region

Row 8

(9.3.1.1) Facility reference number

Select from:

✓ Facility 8

(9.3.1.2) Facility name (optional)

Facility 8

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

South Africa

Limpopo

(9.3.1.8) Latitude

-26.068369

(9.3.1.9) Longitude

28.179978

(9.3.1.10) Located in area with water stress

Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
56.76
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
o
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
o
(9.3.1.20) Withdrawals from third party sources
56761

(9.3.1.21) Total water discharges at this facility (megaliters)
26.39
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ☑ Higher
(9.3.1.23) Discharges to fresh surface water
o
(9.3.1.24) Discharges to brackish surface water/seawater
o
(9.3.1.25) Discharges to groundwater
o
(9.3.1.26) Discharges to third party destinations
26387.56
(9.3.1.27) Total water consumption at this facility (megaliters)
30.37
(9.3.1.28) Comparison of total consumption with previous reporting year
Select from: ✓ Lower
(9.3.1.29) Please explain

Row 9

(9.3.1.1) Facility reference number

Select from:

✓ Facility 9

(9.3.1.2) Facility name (optional)

Facility 9

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

✓ Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Australia

✓ Other, please specify :Australia, West Coast

(9.3.1.8) Latitude

(9.3.1.9) Longitude

115.77677

(9.3.1.10) Located in area with water stress

Select from:

✓ Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)

18.89

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

Lower

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

(9.3.1.16) Withdrawals from brackish surface water/seawater

0

(9.3.1.17) Withdrawals from groundwater - renewable

0

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
18885
(9.3.1.21) Total water discharges at this facility (megaliters)
0.02
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ✓ Lower
(9.3.1.23) Discharges to fresh surface water
o
(9.3.1.24) Discharges to brackish surface water/seawater
0
(9.3.1.25) Discharges to groundwater
o
(9.3.1.26) Discharges to third party destinations
20.26
(9.3.1.27) Total water consumption at this facility (megaliters)
18.86

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Lower

(9.3.1.29) Please explain

Site in Australia in Water Stress Region

Row 10

(9.3.1.1) Facility reference number

Select from:

✓ Facility 10

(9.3.1.2) Facility name (optional)

Facility 10

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

✓ Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Canada

✓ St. Lawrence

(9.3.1.8) Latitude

42.920635

(9.3.1.9) Longitude

-81.189896

(9.3.1.10) Located in area with water stress

Select from:

Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)

96.99

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

✓ About the same

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

(9.3.1.16) Withdrawals from brackish surface water/seawater

0

(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
96986
(9.3.1.21) Total water discharges at this facility (megaliters)
59.81
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ☑ Higher
(9.3.1.23) Discharges to fresh surface water
0
(9.3.1.24) Discharges to brackish surface water/seawater
0
(9.3.1.25) Discharges to groundwater
0

(9.3.1.26) Discharges to third party destinations 59808 (9.3.1.27) Total water consumption at this facility (megaliters) 37.18 (9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Lower

(9.3.1.29) Please explain

Site in Canada in Water Stress Region

Row 11

(9.3.1.1) Facility reference number

Select from:

✓ Facility 11

(9.3.1.2) Facility name (optional)

Facility 11

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply
✓ Risks
(9.3.1.5) Withd

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Peru

☑ Other, please specify :Peru, Pacific Coast

(9.3.1.8) Latitude

-12.28052

(9.3.1.9) Longitude

-76.86407

(9.3.1.10) Located in area with water stress

Select from:

Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)

4.18

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

✓ About the same

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
O
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
4176
(9.3.1.21) Total water discharges at this facility (megaliters)
0.68
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ☑ About the same
(9.3.1.23) Discharges to fresh surface water
0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

677.22

(9.3.1.27) Total water consumption at this facility (megaliters)

3.5

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Lower

(9.3.1.29) Please explain

Site in Peru in Water Stress Region

Row 12

(9.3.1.1) Facility reference number

Select from:

✓ Facility 12

(9.3.1.2) Facility name (optional)

Facility 12

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Mexico

✓ Verde

(9.3.1.8) Latitude

19.467105

(9.3.1.9) Longitude

-99.118161

(9.3.1.10) Located in area with water stress

Select from:

Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)

10.70
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
O
(9.3.1.16) Withdrawals from brackish surface water/seawater
O
(9.3.1.17) Withdrawals from groundwater - renewable
O
(9.3.1.18) Withdrawals from groundwater - non-renewable
O
(9.3.1.19) Withdrawals from produced/entrained water
O
(9.3.1.20) Withdrawals from third party sources
10761.4
(9.3.1.21) Total water discharges at this facility (megaliters)
1.46

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from: ☑ Higher
(9.3.1.23) Discharges to fresh surface water
0
(9.3.1.24) Discharges to brackish surface water/seawater
0
(9.3.1.25) Discharges to groundwater
0
(9.3.1.26) Discharges to third party destinations
1460
(9.3.1.27) Total water consumption at this facility (megaliters)
9.3
(9.3.1.28) Comparison of total consumption with previous reporting year
Select from: ☑ Lower
(9.3.1.29) Please explain
Site in Mexico in Water Stress Region
Row 13

Row 13

(9.3.1.1) Facility reference number

Select from:

✓ Facility 13

(9.3.1.2) Facility name (optional)

Facility 13

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Indonesia

✓ Other, please specify :Javar - Timor

(9.3.1.8) Latitude

-6.390004

(9.3.1.9) Longitude

107.342943

(9.3.1.10) Located in area with water stress
Select from: ☑ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
7.92
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ Much higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
21
(9.3.1.19) Withdrawals from produced/entrained water
o
(9.3.1.20) Withdrawals from third party sources

0.04

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

☑ About the same

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

36

(9.3.1.27) Total water consumption at this facility (megaliters)

7.88

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much higher

(9.3.1.29) Please explain

Site in Indonesia in Water Stress Region

Row 14

(9.3.1.1) Facility reference number

Select from:

✓ Facility 14

(9.3.1.2) Facility name (optional)

Facility 14

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

China

✓ Other, please specify :China Coast

(9.3.1.8) Latitude
31.080525
(9.3.1.9) Longitude
121.378888
(9.3.1.10) Located in area with water stress
Select from: ☑ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
34.64
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ Lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable

(9.3.1.18) Withdrawals from groundwater - non-renewable

(9.3.1.19) Withdrawals from produced/entrained water

0

(9.3.1.20) Withdrawals from third party sources

34642

(9.3.1.21) Total water discharges at this facility (megaliters)

11.89

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

11893

(9.3.1.27) Total water consumption at this facility (megaliters)

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Lower

(9.3.1.29) Please explain

Site in China in Water Stress Region

Row 15

(9.3.1.1) Facility reference number

Select from:

✓ Facility 15

(9.3.1.2) Facility name (optional)

Facility 15

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

✓ Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges
(9.3.1.7) Country/Area & River basin
Spain ☑ Ebro
(9.3.1.8) Latitude
41.116163
(9.3.1.9) Longitude
1.232698
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
28.51
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ Higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater

(9.3.1.17) Withdrawals from groundwater - renewable

0

(9.3.1.18) Withdrawals from groundwater - non-renewable

472

(9.3.1.19) Withdrawals from produced/entrained water

0

(9.3.1.20) Withdrawals from third party sources

28037

(9.3.1.21) Total water discharges at this facility (megaliters)

6.26

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

☑ Higher

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

(9.3.1.26) Discharges to third party destinations

6263

(9.3.1.27) Total water consumption at this facility (megaliters)

22.25

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

(9.3.1.29) Please explain

Site in Spain in Water Stress Region

Row 16

(9.3.1.1) Facility reference number

Select from:

✓ Facility 16

(9.3.1.2) Facility name (optional)

Facility 16

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility Select all that apply Risks (9.3.1.5) Withdrawals or discharges in the reporting year Select from: ✓ Yes, withdrawals and discharges (9.3.1.7) Country/Area & River basin Mexico ✓ Verde (9.3.1.8) Latitude 19.553217 (9.3.1.9) Longitude -99.202623 (9.3.1.10) Located in area with water stress Select from: Yes (9.3.1.13) Total water withdrawals at this facility (megaliters) 29.45

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from: ✓ Higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
29446.15
(9.3.1.21) Total water discharges at this facility (megaliters)
25.79
(9.3.1.22) Comparison of total discharges with previous reporting year

580

Select from:
✓ Much higher

(9.3.1.23) Discharges to fresh surface water

0

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

25793.95

(9.3.1.27) Total water consumption at this facility (megaliters)

3.65

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much lower

(9.3.1.29) Please explain

Site in Mexico in Water Stress Region

Row 17

(9.3.1.1) Facility reference number

Select from:

✓ Facility 17

(9.3.1.2) Facility name (optional)

Facility 17

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Mexico

✓ Other, please specify :RÃ-o Lerma

(9.3.1.8) Latitude

19.386271

(9.3.1.9) Longitude

-99.566081

(9.3.1.10) Located in area with water stress

Select from: ☑ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
4.26
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ About the same
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources

4257.74

(9.3.1.21) Total water discharges at this facility (megaliters)
0.41
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ✓ Much lower
(9.3.1.23) Discharges to fresh surface water
o
(9.3.1.24) Discharges to brackish surface water/seawater
0
(9.3.1.25) Discharges to groundwater
0
(9.3.1.26) Discharges to third party destinations
407
(9.3.1.27) Total water consumption at this facility (megaliters)
3.85
(9.3.1.28) Comparison of total consumption with previous reporting year
Select from: ☑ Much higher
(9.3.1.29) Please explain

Row 18

(9.3.1.1) Facility reference number

Select from:

✓ Facility 18

(9.3.1.2) Facility name (optional)

Facility 18

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

✓ Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

South Africa

Orange

(9.3.1.8) Latitude

(9.3.1.9) Longitude

28.184659

(9.3.1.10) Located in area with water stress

Select from:

✓ Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)

23.91

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

(9.3.1.16) Withdrawals from brackish surface water/seawater

0

(9.3.1.17) Withdrawals from groundwater - renewable

0

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water 0 (9.3.1.20) Withdrawals from third party sources 23910 (9.3.1.21) Total water discharges at this facility (megaliters) 16.52 (9.3.1.22) Comparison of total discharges with previous reporting year Select from: Higher (9.3.1.23) Discharges to fresh surface water 0 (9.3.1.24) Discharges to brackish surface water/seawater (9.3.1.25) Discharges to groundwater 0 (9.3.1.26) Discharges to third party destinations 16517.82 (9.3.1.27) Total water consumption at this facility (megaliters)

7.39

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Lower

(9.3.1.29) Please explain

Site in South Africa in Water Stress Region

Row 19

(9.3.1.1) Facility reference number

Select from:

✓ Facility 19

(9.3.1.2) Facility name (optional)

Facility 19

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

✓ Risks

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

United States of America

✓ Mississippi River

(9.3.1.8) Latitude

43.183909

(9.3.1.9) Longitude

-88.721094

(9.3.1.10) Located in area with water stress

Select from:

Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)

38.38

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

Lower

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

(9.3.1.16) Withdrawals from brackish surface water/seawater

0

(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
o
(9.3.1.20) Withdrawals from third party sources
38380.29
(9.3.1.21) Total water discharges at this facility (megaliters)
11.14
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ✓ Lower
(9.3.1.23) Discharges to fresh surface water
o
(9.3.1.24) Discharges to brackish surface water/seawater
o
(9.3.1.25) Discharges to groundwater
0

(9.3.1.26) Discharges to third party destinations

11141.92

(9.3.1.27) Total water consumption at this facility (megaliters)

27.24

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Lower

(9.3.1.29) Please explain

Site in the US in Water Stress Region [Add row]

(9.3.2) For the facilities in your direct operations referenced in 9.3.1, what proportion of water accounting data has been third party verified?

Water withdrawals - total volumes

(9.3.2.1) % verified

Select from:

✓ 76-100

(9.3.2.2) Verification standard used

ISAE3000

Water withdrawals - volume by source

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISAE3000

Water withdrawals - quality by standard water quality parameters

(9.3.2.1) % verified

Select from:

✓ Not relevant

(9.3.2.3) Please explain

Water withdrawal quality is not monitored

Water discharges - total volumes

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISAE3000

Water discharges - volume by destination

(9.3.2.1) % verified

Select from:

✓ Not verified

(9.3.2.3) Please explain

Limited assurance process looks at total volume only

Water discharges – volume by final treatment level

(9.3.2.1) % verified

Select from:

✓ Not verified

(9.3.2.3) Please explain

Solenis does not currently obtain third-party verification specifically for water discharge volumes by final treatment level. While we monitor and report total water discharge across our operations, the breakdown by final treatment level is not currently subject to external assurance. All sites report discharge volumes internally on a monthly basis under our RC14001® and ISO 14001 certified EHS&S Management System. Where applicable, data on discharge destination and treatment method is reported to local regulatory authorities. Solenis continues to assess the value of expanding external verification to cover treatment-level data in future reporting cycles, in alignment with stakeholder expectations and evolving best practices.

Water discharges – quality by standard water quality parameters

(9.3.2.1) % verified

Select from:

✓ Not verified

(9.3.2.3) Please explain

Solenis does not currently obtain third-party verification for water discharge quality data. However, Solenis sites actively monitor standard discharge parameters based on local governing laws and regulations. Water discharge monitoring for sites may include but is not limited to pH, temperature, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), nutrients (e.g., nitrogen, phosphorus), and relevant inorganic substances Water discharge quality is governed through the Solenis certified Environmental, Health, Safety & Sustainability (EHS&S) Management System, which meets the standards of both RC14001® and ISO 14001. All sites complete an annual EHS survey that includes effluent quality reporting, and over 90% of our manufacturing sites met applicable

discharge limits in 2024. Where deviations occur, corrective actions are implemented following root cause analysis. While this data is not externally assured, Solenis continues to evaluate opportunities to expand third-party verification in line with growing stakeholder expectations and evolving best practices in sustainability reporting.

Water consumption - total volume

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

ISAE3000 [Fixed row]

(9.4) Could any of your facilities reported in 9.3.1 have an impact on a requesting CDP supply chain member?

Select from:

☑ We do not have this data but we intend to collect it within two years

(9.5) Provide a figure for your organization's total water withdrawal efficiency.

(9.5.1) Revenue (currency)

7324000000

(9.5.2) Total water withdrawal efficiency

928734.47

(9.5.3) Anticipated forward trend

We expect our water intensity to decrease as we are targeting water reductions in our production sites as well as lower water requirements from our acquired business.

[Fixed row]

(9.6) Do you calculate water intensity for your activities in the chemical sector?

Select from:

✓ No, but we intend to do so within the next two years

(9.12) Provide any available water intensity values for your organization's products or services.

Row 1

(9.12.1) **Product name**

Specialty Chemicals

(9.12.2) Water intensity value

3.8

(9.12.3) Numerator: Water aspect

Select from:

✓ Water withdrawn

(9.12.4) Denominator

Production Volume (metric tonnes)

(9.12.5) Comment

Water withdrawal intensity in m3/metric tonne product produced

Row 2

(9.12.1) Product name		
Specialty Chemicals		
(9.12.2) Water intensity value		
1.4		
(9.12.3) Numerator: Water aspect		
Select from: ☑ Water consumed		
(9.12.4) Denominator		
Production Volume (metric tonnes)		
(9.12.5) Comment		
Water withdrawal intensity in m3/metric tonne product produced [Add row]		
(9.13) Do any of your products contain substances classified as hazardous by a regulatory authority?		
	Products contain hazardous substances	
	Select from: ✓ Yes	
[Fixed row]		

(9.13.1) What percentage of your company's revenue is associated with products containing substances classified as hazardous by a regulatory authority?

Row 1

(9.13.1.1) Regulatory classification of hazardous substances

Select from:

☑ Annex XVII of EU REACH Regulation

(9.13.1.2) % of revenue associated with products containing substances in this list

Select from:

✓ More than 80%

(9.13.1.3) Please explain

We are in the process of integrating acquired businesses, this is a best estimate

Row 2

(9.13.1.1) Regulatory classification of hazardous substances

Select from:

☑ Candidate List of Substances of Very High Concern for Authorisation above 0.1% by weight (EU Regulation)

(9.13.1.2) % of revenue associated with products containing substances in this list

Select from:

✓ Less than 10%

(9.13.1.3) Please explain

We are in the process of integrating acquired businesses, this is a best estimate

Row 3

(9.13.1.1) Regulatory classification of hazardous substances

Select from:

✓ Annex XIV of UK REACH Regulation

(9.13.1.2) % of revenue associated with products containing substances in this list

Select from:

✓ Less than 10%

(9.13.1.3) Please explain

We are in the process of integrating acquired businesses, this is a best estimate

Row 4

(9.13.1.1) Regulatory classification of hazardous substances

Select from:

☑ Candidate List of Substances of Very High Concern (UK Regulation)

(9.13.1.2) % of revenue associated with products containing substances in this list

Select from:

✓ 41-60

(9.13.1.3) Please explain

We are in the process of integrating acquired businesses, this is a best estimate

Row 5

(9.13.1.1) Regulatory classification of hazardous substances

Select from:

☑ Brazilian Regulatory Standards

(9.13.1.2) % of revenue associated with products containing substances in this list

Select from:

✓ More than 80%

(9.13.1.3) Please explain

We are in the process of integrating acquired businesses, this is a best estimate based on GHS standards in Brazil

Row 6

(9.13.1.1) Regulatory classification of hazardous substances

Select from:

☑ Federal Water Pollution Control Act / Clean Water Act (United States Regulation)

(9.13.1.2) % of revenue associated with products containing substances in this list

Select from:

✓ 41-60

(9.13.1.3) Please explain

We are in the process of integrating acquired businesses, this is a best estimate

Row 7

(9.13.1.1) Regulatory classification of hazardous substances

Select from:

✓ Water Pollution Prevention Act (Japan Regulation)

(9.13.1.2) % of revenue associated with products containing substances in this list

Select from:

☑ 21-40

(9.13.1.3) Please explain

We are in the process of integrating acquired businesses, this is a best estimate

Row 8

(9.13.1.1) Regulatory classification of hazardous substances

Select from:

☑ Official Mexican Standards (NOMs) / National Inventory of Chemical Substances

(9.13.1.2) % of revenue associated with products containing substances in this list

Select from:

☑ 21-40

(9.13.1.3) Please explain

We are in the process of integrating acquired businesses, this is a best estimate from the following regulation: Mexican NOM-028-STPS-2012, Work Management System - System in Critical Processes and Equipment Entailing the Use of Hazardous Chemical Substances

Row 9

(9.13.1.1) Regulatory classification of hazardous substances

Select from:

☑ List of substances (Canadian Environmental Protection Act)

(9.13.1.2) % of revenue associated with products containing substances in this list

✓ 21-40

(9.13.1.3) Please explain

We are in the process of integrating acquired businesses, this is a best estimate from the following regulation: CEPA Schedule 1 - List of Toxic Substances

Row 10

(9.13.1.1) Regulatory classification of hazardous substances

Select from:

☑ Guidelines for Controlling the Use of Key Chemical Substances in Consumer Products (China Regulation)

(9.13.1.2) % of revenue associated with products containing substances in this list

Select from:

10-20

(9.13.1.3) Please explain

We are in the process of integrating acquired businesses, this is a best estimate [Add row]

(9.14) Do you classify any of your current products and/or services as low water impact?

(9.14.1) Products and/or services classified as low water impact

Select from:

✓ Yes

(9.14.2) Definition used to classify low water impact

We manufacture a wide range of products aimed at improving the water efficiency of our customers. We track these benefits through our Value Advantage program. The ValueAdvantage partner program is Solenis' value delivery program for our Consumer Solutions and Industrial Solutions customers. It enables Solenis to quantify the carbon "handprint" of projects conducted with our customers, documenting sustainability savings at the project level. The program was developed to identify, document and measure the value we bring to our customers' businesses with our chemistry, support, service and expertise. Much of the value we create for customers is driven by our ability to help them reach their sustainability goals, such as minimizing water and energy usage, reducing their carbon footprint and limiting waste. In 2024, we achieved \$257 million of value for our customers globally. The internal Solenis ValueAdvantage database contains hundreds of improvement projects which are searchable by industry and application providing our global salesforce with a comprehensive pipeline of best practices. This approach accelerates the learning curve for new Solenis representatives as the process for each project is clearly outlined and contains real world examples. Value calculators have been developed and are continuously updated to enable consistent and uniform tracking of the sustainability impact at our customer sites to ensure that we are delivering the value we promise. The program also serves as a useful tool to identify initiatives that are sustainability successes and help our customers to identify additional opportunities to reduce their environmental footprint. Nearly every new product introduction delivers sustainability benefits that fall broadly into one or more of categories, including water & resource efficiency. One example is a product from our Diversey business: the Clax™ Polar laundry program. It maximizes energy and water savings without compromising performance. By enabling cold washing at approximately 30°C (86°F) and requiring only one rinse cycle, the program can reduce energy consumption by up to 65%, water usage by up to 50%, and minimize overall washing time. expertise. Much of the value we create for customers is driven by our ability to help them reach their sustainability goals, such as minimizing water and energy usage, reducing their carbon footprint and limiting waste. In 2024, we achieved \$257 million of value for our customers globally. The internal Solenis ValueAdvantage database contains hundreds of improvement projects which are searchable by industry and application providing our global salesforce with a comprehensive pipeline of best practices. This approach accelerates the learning curve for new Solenis representatives as the process for each project is clearly outlined and contains real world examples. Value calculators have been developed and are continuously updated to enable consistent and uniform tracking of the sustainability impact at our customer sites to ensure that we are delivering the value we promise. The program also serves as a useful tool to identify initiatives that are sustainability successes and help our customers to identify additional opportunities to reduce their environmental footprint. Nearly every new product introduction delivers sustainability benefits that fall broadly into one or more of categories, including water & resource efficiency. One example is a product from our Diversey business: the Clax™ Polar laundry program. It maximizes energy and water savings without compromising performance. By enabling cold washing at approximately 30°C (86°F) and requiring only one rinse cycle, the program can reduce energy consumption by up to 65%, water usage by up to 50%, and minimize overall washing time.

(9.14.4) Please explain

Details and examples can be found in our sustainability report +customer section. https://www.solenis.com/globalassets/resources/sustainability--regulatory-library/105522-lit-2024sustainabilityreport-en-wb-v2.pdf
[Fixed row]

(9.15) Do you have any water-related targets?

Select from:

✓ Yes

(9.15.1) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories.

Water pollution

(9.15.1.1) Target set in this category

Select from:

✓ No, and we do not plan to within the next two years

(9.15.1.2) Please explain

We currently do not collect water pollution data at the corporate level. Over the next two years, our priority is to establish reporting in this area. Once available, the data will be assessed to determine if targets are needed.

Water withdrawals

(9.15.1.1) Target set in this category

Select from:

Yes

Water, Sanitation, and Hygiene (WASH) services

(9.15.1.1) Target set in this category

Select from:

✓ No, but we plan to within the next two years

(9.15.1.2) Please explain

We plan to set targets in the next two years

Other

(9.15.1.1) Target set in this category

Select from:

Yes

[Fixed row]

(9.15.2) Provide details of your water-related targets and the progress made.

Row 1

(9.15.2.1) Target reference number

Select from:

✓ Target 1

(9.15.2.2) Target coverage

Select from:

✓ Organization-wide (direct operations only)

(9.15.2.3) Category of target & Quantitative metric

Product water intensity

☑ Reduction per unit of production

(9.15.2.4) Date target was set

06/03/2024

(9.15.2.5) End date of base year

09/30/2023

(9.15.2.6) Base year figure

2.52

(9.15.2.7) End date of target year

09/30/2035

(9.15.2.8) Target year figure

2.27

(9.15.2.9) Reporting year figure

2.37

(9.15.2.10) Target status in reporting year

Select from:

Underway

(9.15.2.11) % of target achieved relative to base year

60

(9.15.2.12) Global environmental treaties/initiatives/ frameworks aligned with or supported by this target

Select all that apply

✓ None, no alignment after assessment

(9.15.2.13) Explain target coverage and identify any exclusions

This new target covers both legacy Solenis operations and the newly acquired Diversey business.

(9.15.2.14) Plan for achieving target, and progress made to the end of the reporting year

This is the first year for this target and the progress made toward the overall reduction in water intensity is attributable to two main factors: (1) the integration of Diversey, whose products generally require less water in manufacturing, and (2) the implementation of water efficiency projects across several Solenis sites. For example, our Charleston facility successfully reduced water usage by approximately 120 gallons per minute (GPM) through operational improvements. These combined efforts have contributed meaningfully to the progress toward our intensity reduction target.

(9.15.2.16) Further details of target

This target, is focused on reducing water intensity, through a combination of operational improvements and investments in water savings technology.

Row 2

(9.15.2.1) Target reference number

Select from:

✓ Target 2

(9.15.2.2) Target coverage

Select from:

✓ Organization-wide (direct operations only)

(9.15.2.3) Category of target & Quantitative metric

Product use phase

✓ Increase in revenue from products designed for use phase resource efficiency

(9.15.2.4) Date target was set

06/30/2020

(9.15.2.5) End date of base year

09/29/2018

(9.15.2.6) Base year figure

(9.15.2.7) End date of target year

09/29/2030

(9.15.2.8) Target year figure

90

(9.15.2.9) Reporting year figure

73

(9.15.2.10) Target status in reporting year

Select from:

Underway

(9.15.2.11) % of target achieved relative to base year

-70

(9.15.2.12) Global environmental treaties/initiatives/ frameworks aligned with or supported by this target

Select all that apply

✓ None, alignment not assessed

(9.15.2.13) Explain target coverage and identify any exclusions

Target covers whole business

(9.15.2.14) Plan for achieving target, and progress made to the end of the reporting year

We Plan on achieving this target through developing new technologies to improve customers' products and processes, as well as developing digital and other technical solutions that enhance monitoring and optimizing the feeding and use of our specialty chemicals.

(9.15.2.16) Further details of target

Although this year's reporting number is lower, we anticipate steady growth in the coming years. [Add row]

C10. Environmental performance - Plastics

(10.1) Do you have plastics-related targets, and if so what type?

(10.1.1) Targets in place

Select from:

Yes

(10.1.2) Target type and metric

Plastic packaging

- ☑ Eliminate single-use plastic packaging
- ☑ Eliminate problematic and unnecessary plastic packaging
- ✓ Increase the proportion of plastic packaging that is reusable
- ☑ Reduce the total weight of virgin content in plastic packaging
- ✓ Increase the proportion of plastic packaging that is compostable
- ☑ Reduce the total weight of plastic packaging used and/or produced
- ✓ Increase the proportion of post-consumer recycled content in plastic packaging
- ✓ Increase the proportion of plastic packaging that is recyclable in practice and at scale
- ✓ Increase the proportion of renewable content from responsibly managed sources in plastic packaging

Plastic goods/products

- ☑ Eliminate single-use plastic products
- ☑ Reduce the total weight of virgin content in plastic goods/products
- ✓ Increase the proportion of post-consumer recycled content in plastic goods/products
- ☑ Increase the proportion of our goods/products that are recyclable in practice and at scale

☑ Ensure compliance with EPR policies and schemes

(10.1.3) Please explain

Solenis is committed to reducing our packaging footprint through a variety of initiatives to reduce the amount of packaging, increase the amount of recycled content, increase recyclability, and promote re-use. By 2035, our goal is to also ensure that 100% of our packaging efforts contribute to a circular economy. Through innovations focused on resource efficiency, we work towards efficiently managing our waste and enabling our customers to do so as well. By increasing recyclability or the use of recycled materials, we are working towards increasing our packaging efficiency. Since 2020, we have been using a single metric to measure the outcomes of our circularity initiatives. Our metric is a variation of the Material Circularity Index (MCI) developed by Ellen MacArthur Foundation and Granta Design. With reference to plastic goods/products: Solenis has ongoing initiatives replacing virgin plastic by post-consumer recycled content, in detail: 1) brushes are made of 100% recycled content (PCR / PIR) 2) vacuum cleaner and swingo scrubber driers made out of 30% PCR plastic; 3) Ultimaxx 360 (latest innovation): 20% recycled plastic; We already have a recyclability of approx. 95%, but this is a constant process to use materials which are recyclable. The recyclability data are available for each machine.

[Fixed row]

(10.2) Indicate whether your organization engages in the following activities.

Production/commercialization of plastic polymers (including plastic converters)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

N/A

Production/commercialization of durable plastic goods and/or components (including mixed materials)

(10.2.1) Activity applies

Select from:

✓ Yes

(10.2.2) Comment

Mainly for our Taski business

Usage of durable plastics goods and/or components (including mixed materials)

(10.2.1) Activity applies

Select from:

Yes

(10.2.2) Comment

Mainly for our Taski business

Production/commercialization of plastic packaging

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

N/A

Production/commercialization of goods/products packaged in plastics

(10.2.1) Activity applies

Select from:

✓ Yes

(10.2.2) Comment

Mainly plastic packaging for our products

Provision/commercialization of services that use plastic packaging (e.g., food services)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

N/A

Provision of waste management and/or water management services

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

N/A

Provision of financial products and/or services for plastics-related activities

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Other activities not specified

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

N/A

[Fixed row]

(10.4) Provide the total weight of plastic durable goods and durable components produced, sold and/or used, and indicate the raw material content.

Durable goods and durable components sold

(10.4.2) Raw material content percentages available to report

Select all that apply

☑ % post-consumer recycled content

(10.4.6) % post-consumer recycled content

90

(10.4.7) Please explain

TASKI business, which is Solenis business significant for plastic durable goods. We are reporting the percentage of post-consumer recycled content based on supplier data but are not disclosing total weight as complete information is not yet available. Recyclability figures are reliable as provided by suppliers. The figure reflects the weighted average of available material specifications but do not yet cover all durable plastic goods and components across our portfolio. We are enhancing our data collection processes and expect to report total weight and content more comprehensively in the next cycle.

Durable goods and durable components used

(10.4.1) Total weight during the reporting year (Metric tons)

1312

(10.4.2) Raw material content percentages available to report

Select all that apply

- ✓ % virgin fossil-based content
- ✓ % virgin renewable content
- ✓ % pre-consumer recycled content

(10.4.3) % virgin fossil-based content

99.6

(10.4.4) % virgin renewable content

0.4

(10.4.5) % pre-consumer recycled content

0.4

(10.4.7) Please explain

Volume sourced is referred to TASKI business, which is Solenis business significant for plastic durable goods. Data are collected from suppliers for FY 2024 and cover 75% of spend in scope for plastic durable goods. Solenis is working to improve more and more data traceability.

[Fixed row]

(10.5) Provide the total weight of plastic packaging sold and/or used and indicate the raw material content.

Plastic packaging used

(10.5.1) Total weight during the reporting year (Metric tons)

60000

(10.5.2) Raw material content percentages available to report

Select all that apply

- ✓ % virgin fossil-based content
- ✓ % virgin renewable content
- ✓ % post-consumer recycled content

(10.5.3) % virgin fossil-based content

94

(10.5.4) % virgin renewable content

0

(10.5.6) % post-consumer recycled content

6

(10.5.7) Please explain

We have evaluated FY2024 PCR content for plastic packaging sourced at global level as an average result starting form European data (where we have a structured traceability process implemented, out of EU we are not already tracking PCR data): - in Europe we sourced 82% virgin fossil content and 18% PCR content (equal to 3612460 kg) - Spreading EU PCR content volume (3612460 kg) into total volume sourced Globally (60000000 kg) the result is 6% PCR content at Global level therefore average PRC content at Global level is 6% and virgin % content is 94%. [Fixed row]

(10.5.1) Indicate the circularity potential of the plastic packaging you sold and/or used.

Plastic packaging used

(10.5.1.1) Percentages available to report for circularity potential

Select all that apply

- ✓ % reusable
- √ % technically recyclable
- ✓ % recyclable in practice and at scale

(10.5.1.2) % of plastic packaging that is reusable

40

(10.5.1.3) % of plastic packaging that is technically recyclable

88

(10.5.1.4) % of plastic packaging that is recyclable in practice at scale

60

(10.5.1.5) Please explain

The circularity values are based on the information from European business [Fixed row]

(11.2) What actions has your organization taken in the reporting year to progress your biodiversity-related commitments?

(11.2.1) Actions taken in the reporting period to progress your biodiversity-related commitments

Select from:

☑ Yes, we are taking actions to progress our biodiversity-related commitments

(11.2.2) Type of action taken to progress biodiversity-related commitments

Select all that apply

✓ Land/water protection

☑ Education & awareness

[Fixed row]

(11.3) Does your organization use biodiversity indicators to monitor performance across its activities?

Does your organization use indicators to monitor biodiversity performance?
Select from: ✓ No, we do not use indicators, but plan to within the next two years

[Fixed row]

(11.4) Does your organization have activities located in or near to areas important for biodiversity in the reporting year?

Legally protected areas

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

Yes

(11.4.2) Comment

Sites report annually on their potential impact on area important to biodiversity. This is backed up by screening site locations against the WWF Biodiversity Risk Filter. Solenis is developing its Biodiversity assessment process and is not able to share individual site assessments at this time

UNESCO World Heritage sites

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

Yes

(11.4.2) Comment

Site locations are reviewed using the UNESCO Sites Navigator

UNESCO Man and the Biosphere Reserves

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ No

(11.4.2) Comment

Site locations are reviewed using the UNESCO Sites Navigator. No Man and Biosphere reserves are with 10 km of the sites

Ramsar sites

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

Yes

(11.4.2) Comment

Site locations are reviewed using the Ramsar Sites Information Service.

Key Biodiversity Areas

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

Yes

(11.4.2) Comment

Sites report annually on their potential impact on area important to biodiversity. This is backed up by screening site locations against the WWF Biodiversity Risk Filter. Solenis is developing its Biodiversity assessment process and is not able to share individual site assessments at this time

Other areas important for biodiversity

(11.4.1) Indicate whether any of your organization's activities are located in or near to this type of area important for biodiversity

Select from:

✓ Yes

(11.4.2) Comment

Sites report annually on their potential impact on area important to biodiversity. This is backed up by screening site locations against the WWF Biodiversity Risk Filter. Solenis is developing its Biodiversity assessment process and is not able to share individual site assessments at this time [Fixed row]

(11.4.1) Provide details of your organization's activities in the reporting year located in or near to areas important for biodiversity.

Row 1

(11.4.1.2) Types of area important for biodiversity

Select all that apply

Ramsar sites

(11.4.1.4) Country/area

Select from:

✓ United Kingdom of Great Britain and Northern Ireland

(11.4.1.5) Name of the area important for biodiversity

Humber Estuary

(11.4.1.6) Proximity

Select from:

Adjacent

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Chemical Manufacturing Site

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ Yes, but mitigation measures have been implemented

(11.4.1.10) Mitigation measures implemented within the selected area

Select all that apply

- ☑ Physical controls
- ✓ Operational controls
- Abatement controls

(11.4.1.11) Explain how your organization's activities located in or near to the selected area could negatively affect biodiversity, how this was assessed, and describe any mitigation measures implemented

An uncontrolled release of chemicals could impact the Humber Estuary and site of special scientific interest. The site is fully contained including the collection and testing of surface water before it is discharged. The site operated under an Environment Permit until it was closed in 2025.

Row 2

(11.4.1.2) Types of area important for biodiversity

Select all that apply

✓ UNESCO World Heritage sites

(11.4.1.4) Country/area

Select from:

✓ Spain

(11.4.1.5) Name of the area important for biodiversity

Archaeological Ensemble of Tarraco

(11.4.1.6) Proximity

Select from:

☑ Up to 5 km

(11.4.1.8) Briefly describe your organization's activities in the reporting year located in or near to the selected area

Chemical Manufacturing Site

(11.4.1.9) Indicate whether any of your organization's activities located in or near to the selected area could negatively affect biodiversity

Select from:

✓ No

(11.4.1.11) Explain how your organization's activities located in or near to the selected area could negatively affect biodiversity, how this was assessed, and describe any mitigation measures implemented

The Archaeological Ensemble of Tarraco is a group of Roman buildings. The sites activities do not have an impact on these ruins. [Add row]

C13. Further information & sign o	C13	. Furt	her ir	ıforma	ition	&	sian	0
-----------------------------------	-----	--------	--------	--------	-------	---	------	---

(13.1) Indicate if any environmental information included in your CDP response (not already reported in 7.9.1/2/3, 8.9.1/2/3/4, and 9.3.2) is verified and/or assured by a third party?

Other environmental information included in your CDP response is verified and/or assured by a third party
Select from: ☑ Yes

[Fixed row]

(13.1.1) Which data points within your CDP response are verified and/or assured by a third party, and which standards were used?

Row 1

(13.1.1.1) Environmental issue for which data has been verified and/or assured

Select all that apply

✓ Climate change

(13.1.1.2) Disclosure module and data verified and/or assured

Environmental performance - Climate change

☑ Other data point in module 7, please specify :Section 7.30.1 Total energy consumption

(13.1.1.3) Verification/assurance standard

✓ ASAE 3000

(13.1.1.4) Further details of the third-party verification/assurance process

Limited Assurance of annual sustainability report and environmental metrics covering all of our global operations

(13.1.1.5) Attach verification/assurance evidence/report (optional)

Assurance Letter.pdf

Row 2

(13.1.1.1) Environmental issue for which data has been verified and/or assured

Select all that apply

✓ Climate change

(13.1.1.2) Disclosure module and data verified and/or assured

Environmental performance - Climate change

☑ Other data point in module 7, please specify :Section 7.30.7 Total fuel consumption

(13.1.1.3) Verification/assurance standard

General standards

✓ ASAE 3000

(13.1.1.4) Further details of the third-party verification/assurance process

Limited Assurance of annual sustainability report and environmental metrics covering all of our global operations

(13.1.1.5) Attach verification/assurance evidence/report (optional)

Assurance Letter.pdf

Row 3

(13.1.1.1) Environmental issue for which data has been verified and/or assured

Select all that apply

Water

(13.1.1.2) Disclosure module and data verified and/or assured

Environmental performance - Water security

☑ Water intensities of products and services

(13.1.1.3) Verification/assurance standard

General standards

✓ ASAE 3000

(13.1.1.4) Further details of the third-party verification/assurance process

Limited Assurance of annual sustainability report and environmental metrics covering all of our global operations. The assurance covers intensity by product volume.

(13.1.1.5) Attach verification/assurance evidence/report (optional)

Assurance Letter.pdf [Add row]

(13.3) Provide the following information for the person that has signed off (approved) your CDP response.

(13.3.1) Job title

Chief Sustainability Officer

(13.3.2) Corresponding job category

Select from:

✓ Chief Sustainability Officer (CSO) [Fixed row]

(13.4) Please indicate your consent for CDP to share contact details with the Pacific Institute to support content for its Water Action Hub website.

Select from:

☑ Yes, CDP may share our Disclosure Submission Lead contact details with the Pacific Institute